分析 根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AG=DG,然后根據(jù)等邊對(duì)等角的性質(zhì)可得∠ADG=∠DAG,再結(jié)合兩直線平行,內(nèi)錯(cuò)角相等可得∠ADG=∠CED,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠AGE=2∠ADG,從而得到∠AED=∠AGE,再利用等角對(duì)等邊的性質(zhì)得到AE=AG,然后利用勾股定理列式計(jì)算即可得解.
解答 解:∵四邊形ABCD是矩形,點(diǎn)G是DF的中點(diǎn),
∴AG=DG,
∴∠ADG=∠DAG,![]()
∵AD∥BC,
∴∠ADG=∠CED,
∴∠AGE=∠ADG+∠DAG=2∠CED,
∵∠AED=2∠CED,
∴∠AED=∠AGE,
∴AE=AG=2$\sqrt{7}$,
在Rt△ABE中,AB=$\sqrt{A{E}^{2}-B{E}^{2}}$=$\sqrt{28-4}$=2$\sqrt{6}$,
故答案為:2$\sqrt{6}$.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì),等邊對(duì)等角的性質(zhì),等角對(duì)等邊的性質(zhì),以及勾股定理的應(yīng)用,求出AE=AG是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| x | … | -4 | -3 | -2 | -1 | -m | m | 1 | 2 | 3 | 4 | … |
| y | … | $\frac{3}{4}$ | $\frac{2}{3}$ | $\frac{1}{2}$ | 0 | -1 | 3 | 2 | $\frac{3}{2}$ | $\frac{4}{3}$ | $\frac{5}{4}$ | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com