分析 過點(diǎn)O作OE⊥AB于點(diǎn)E,OF⊥BC于點(diǎn)F.根據(jù)切線的性質(zhì),知OE、OF是⊙O的半徑;然后由三角形的面積間的關(guān)系(S△ABO+S△BOD=S△ABD=S△ACD)列出關(guān)于圓的半徑的等式,求得圓的半徑.
解答 解:過點(diǎn)O作OE⊥AB于點(diǎn)E,OF⊥BC于點(diǎn)F.
∵AB、BC是⊙O的切線,![]()
∴點(diǎn)E、F是切點(diǎn),
∴OE、OF是⊙O的半徑;
∴OE=OF;
在△ABC中,∠C=90°,AC=6,AB=10,
∴由勾股定理,得BC=8;
又∵D是BC邊的中點(diǎn),
∴S△ABD=S△ACD,
又∵S△ABD=S△ABO+S△BOD,
∴$\frac{1}{2}$AB•OE+$\frac{1}{2}$BD•OF=$\frac{1}{2}$CD•AC,即10×OE+4×OE=4×6,
解得OE=$\frac{12}{7}$,
∴⊙O的半徑是$\frac{12}{7}$,
故答案為$\frac{12}{7}$.
點(diǎn)評 本題考查了切線的性質(zhì)與三角形的面積.運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com