分析 (1)根據(jù)等邊三角形的性質(zhì)可得AC=BC,CD=CE,∠ACB=∠DCE=60°,然后求出∠ACD=∠BCE,再利用“邊角邊”證明△ACD和△BCE全等,根據(jù)全等三角形對應(yīng)邊相等可得AD=BE,根據(jù)全等三角形對應(yīng)角相等可得∠ADC=∠BEC,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠DPE=∠DCE;
(2)證明△ACD≌△BCE(SAS),得到AD=BE,∠DAC=∠EBC,根據(jù)∠BPA=180°-∠ABP-∠BAP=180°-∠ABC-∠BAC,即可解答.
(3)如圖3,以AB為邊在△ABC外側(cè)作等邊△ABE,連接CE,由(2)可得:BD=CE,證明△EBC是直角三角形,利用勾股定理求出CE的長度,即可解答.
解答 解:(1)如圖1,![]()
∵△ABC和△CDE都是等邊三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BCE,
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠ADC=∠BEC,
由三角形的外角性質(zhì),∠DPE=∠PEA+∠DAC,
∠DCE=∠ADC+∠DAC,
∴∠DPE=∠DCE=60°;
故答案為:相等,60;
(2)如圖2,![]()
∵△ABC和△CDE都是等邊三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BCE,
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠DAC=∠EBC,
∴∠BPA=180°-∠ABP-∠BAP=180°-∠ABC-∠BAC=60°.
(3)如圖3,以AB為邊在△ABC外側(cè)作等邊△ABE,連接CE.![]()
由(2)可得:BD=CE
∴∠EBC=60°+30°=90°,
∴△EBC是直角三角形
∵EB=60m BC=80m,
∴CE=$\sqrt{B{E}^{2}+B{C}^{2}}$=$\sqrt{6{0}^{2}+8{0}^{2}}$=100(m).
∴水池兩旁B、D兩點之間的距離為100m.
點評 本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì)與判定,熟記性質(zhì)與判定方法是解題的關(guān)鍵,難點在于(靈活運用)作出輔助線構(gòu)造成等邊三角形和直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 0和1 | C. | 只有正數(shù) | D. | 0和正數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 溫度由-3℃上升3℃后達(dá)到-6℃ | |
| B. | 零減去一個數(shù)得這個數(shù)的相反數(shù) | |
| C. | $\frac{π}{3}$既是分?jǐn)?shù),又是有理數(shù) | |
| D. | 20.12既不是整數(shù),也不是分?jǐn)?shù),所以它不是有理數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com