分析 (1)將A點(diǎn)的坐標(biāo)代入拋物線中,即可得出二次函數(shù)的解析式.
(2)本題要分兩種情況進(jìn)行討論:
①PA=AB,先根據(jù)拋物線的解析式求出B點(diǎn)的坐標(biāo),即可得出OB的長,進(jìn)而可求出AB的長,也就知道了PB的長,由此可求出P點(diǎn)的坐標(biāo);
②PB=AB,此時(shí)P與A關(guān)于y軸對稱,由此可求出P點(diǎn)的坐標(biāo).
(3)觀察圖象結(jié)合解析式寫出答案即可.
解答 解:(1)∵拋物線y=-x2+5x+n經(jīng)過點(diǎn)A(1,0)
∴n=-4
∴y=-x2+5x-4;
(2)∵拋物線的解析式為y=-x2+5x-4,
∴令x=0,則y=-4,
∴B點(diǎn)坐標(biāo)(0,-4),AB=$\sqrt{17}$,
①當(dāng)PA=AB時(shí),PA=AB,則有OB=OP
此時(shí)P(0,4)
②當(dāng)PB=AB時(shí),|PB|=$\sqrt{17}$,
故P(0,$\sqrt{17}-4$);P(0,-$\sqrt{17}-4$)
③P為頂點(diǎn)時(shí),PA=PB,點(diǎn)P在AB的垂直平分線與y軸交點(diǎn)處(0,-$\frac{15}{8}$)
因此P點(diǎn)的坐標(biāo)為P(0,4);P(0,$\sqrt{17}-4$);P(0,-$\sqrt{17}-4$);P(0,-$\frac{15}{8}$)
(3)將拋物線y=-x2+5x-4沿著坐標(biāo)軸方向向左平移1個(gè),或向左平移4個(gè),或向上平移4個(gè)均平移可以使它使它經(jīng)過原點(diǎn).
點(diǎn)評 本題考查了二次函數(shù)解析式的確定、等腰三角形的性質(zhì)等知識(shí)點(diǎn),主要考查學(xué)生分類討論、數(shù)形結(jié)合的數(shù)學(xué)思想方法.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (a-b)2=a2-b2 | B. | (a+b)2=a2+ab+b2 | C. | (1+a)(a-1)=a2-1 | D. | (a+b)(b-a)=a2-b2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4cm | B. | 4$\sqrt{2}$cm | C. | 3$\sqrt{2}$cm | D. | $\sqrt{2}$cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2x2-xy-3y2 | B. | 2x2+xy+3y2 | C. | -8x2+3xy-y2 | D. | -5x2+xy-2y2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com