分析 根據(jù)折疊的性質(zhì),得出AD'=DE,而AD'∥DE,進(jìn)而得到四邊形ADED'是平行四邊形,由折疊可得,D'E垂直平分AA',即可得出△AA'B是直角三角形,再根據(jù)∠B=∠D'A'B,得到D'A'=D'B=2,即AB=2+2=4,最后在Rt△AA'B中,運用勾股定理進(jìn)行計算即可得到AA'的長.
解答 解:由折疊可得,∠DAE=∠D'AE,AD=AD'=2,
∵AB∥CD,
∴∠DEA=∠D'AE,
∴∠DAE=∠DEA,
∴AD=DE=2,
∴AD'=DE,而AD'∥DE,
∴四邊形ADED'是平行四邊形,
∴AD∥D'E,
由折疊可得,D'E垂直平分AA',
∴AA'⊥AD,
又∵AD∥BC,
∴AA'⊥BC,
∴△AA'B是直角三角形,
∵AD'=A'D'=2,
∴∠D'AA'=∠D'A'A,
又∵∠D'AA'+∠B=90°,∠D'A'A+∠D'A'B=90°,
∴∠B=∠D'A'B,
∴D'A'=D'B=2,
∴AB=2+2=4,
又∵A'是BC的中點,BC=AD=2,
∴A'B=1,
∴AA'=$\sqrt{A{B}^{2}-A'{B}^{2}}$=$\sqrt{{4}^{2}-{1}^{2}}$=$\sqrt{15}$.
故答案為:$\sqrt{15}$.
點評 本題主要考查了折疊問題,平行四邊形的判定與性質(zhì),等角對等邊以及勾股定理的運用,解題時注意:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com