分析 (1)根據(jù)直線解析式求出點(diǎn)M、N的坐標(biāo),再根據(jù)圖2判斷出CM的長,然后求出OC,從而得到點(diǎn)C的坐標(biāo),根據(jù)被截線段在一段時間內(nèi)長度不變可以判斷出先經(jīng)過點(diǎn)B后經(jīng)過點(diǎn)D;
(2)根據(jù)圖2求出BM=10,再求出OB,然后寫出點(diǎn)B的坐標(biāo),利用勾股定理列式求出CD,再求出BC的長度,從而得到BC=CD,判斷出?ABCD是菱形,根據(jù)向左平移橫坐標(biāo)減表示出平移后的直線解析式,把點(diǎn)D的坐標(biāo)代入函數(shù)解析式求出t的值即為a;
(3)根據(jù)菱形的性質(zhì)寫出點(diǎn)A的坐標(biāo),再求出F的坐標(biāo),然后設(shè)直線EF的解析式為y=kx+b,再利用待定系數(shù)法求一次函數(shù)解析式解答;
(4)根據(jù)過平行四邊形中心的直線平分平行四邊形的面積,求出菱形的中心坐標(biāo),然后代入直線MN的解析式計(jì)算即可得解.
解答 解:(1)令y=0,則$\frac{3}{4}$x-6=0,解得x=8,
令x=0,則y=-6,
∴點(diǎn)M(8,0),N(0,-6)
∴OM=8,ON=6,
由圖2可知5秒后直線經(jīng)過點(diǎn)C,
∴CM=5,OC=OM-CM=8-5=3,
∴C(3,0),;
∵10秒~a秒被截線段長度不變,
∴先經(jīng)過點(diǎn)B;
故答案為:(3,0);B;
(2)由圖2可知BM=10,
∴OB=BM-OM=10-8=2,
∴B(-2,0),
在Rt△OCD中,由勾股定理得,CD=$\sqrt{O{D}^{2}+O{C}^{2}}$=5,
∴BC=CD=5,
∴?ABCD是菱形.
∵設(shè)直線MN向x軸負(fù)方向平移的速度為每秒1個單位的長度,
平移后的直線解析式為y=$\frac{3}{4}$(x+t)-6,
把點(diǎn)D(0,4)代入得,$\frac{3}{4}$(0+t)-6=4,
解得t=$\frac{40}{3}$,
∴a=$\frac{40}{3}$.;
故答案為:(-2,0); $\frac{40}{3}$.
(3)由(2)可得點(diǎn)E的坐標(biāo)為($\frac{40}{3}$,4),由菱形的性質(zhì),點(diǎn)A(-5,4),
代入直線平移后的解析式得,$\frac{3}{4}$(-5+t)-6=4,
解得t=$\frac{55}{3}$,
∴點(diǎn)F($\frac{55}{3}$,0);
設(shè)直線EF的解析式為m=kt+b,
則$\left\{\begin{array}{l}{\frac{40}{3}k+b=4}\\{\frac{55}{3}k+b=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-\frac{4}{5}}\\{b=\frac{44}{3}}\end{array}\right.$,
所以線段EF的解析式為:m=-$\frac{4}{5}$t+$\frac{44}{3}$($\frac{40}{3}$≤t≤$\frac{55}{3}$);
(4)∵B(-2,0),D(0,4),
∴?ABCD的中心坐標(biāo)為(-1,2),
∵直線M平分?ABCD的面積,
∴直線MN經(jīng)過中心坐標(biāo),
∴$\frac{3}{4}$(-1+t)-6=2,
解得t=$\frac{35}{3}$,
即t=$\frac{35}{3}$時,該直線平分?ABCD的面積.
點(diǎn)評 本題是一次函數(shù)綜合題型,主要利用了平行四邊形的性質(zhì),菱形的判定與性質(zhì),一次函數(shù)圖象的平移待定系數(shù)法求一次函數(shù)解析式,表示出平移后的直線MN的解析式是解題的關(guān)鍵,也是本題的難點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x≥1 | B. | x≥-1 | C. | x≥$\frac{1}{2}$ | D. | x≥-$\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com