分析 如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設(shè)為x ),∠FEG=∠CEG;同理可證AF=AD=2$\sqrt{5}$,∠FEA=∠DEA,進(jìn)而證明△AEG為直角三角形,運(yùn)用射影定理即可解決問題.
解答 解:如圖:![]()
連接EG;
∵四邊形ABCD為矩形,
∴∠D=∠C=90°,DC=AB=4;
由題意得:EF=DE=EC=2,∠EFG=∠D=90°;
在Rt△EFG與Rt△ECG中,
$\left\{\begin{array}{l}{EF=EC}\\{EG=EG}\end{array}\right.$,
∴△EFG≌△ECG,
∴FG=CG(設(shè)為x ),∠FEG=∠CEG;
同理可證:AF=AD=2$\sqrt{5}$,∠FEA=∠DEA,
∴∠AEG=$\frac{1}{2}$×180°=90°,而EF⊥AG,由射影定理得:
22=2$\sqrt{5}$•x,
∴x=$\frac{2}{5}$$\sqrt{5}$,
∴$\frac{CG}{GB}$=$\frac{1}{5}$.
故答案為:$\frac{1}{5}$.
點(diǎn)評 此題考查矩形的性質(zhì),翻折變換的性質(zhì),以考查全等三角形的性質(zhì)及其應(yīng)用、射影定理等幾何知識點(diǎn)為核心構(gòu)造而成;對綜合的分析問題解決問題的能力提出了一定的要求.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com