分析 首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及到兩個(gè)直角三角形Rt△ABC、Rt△BDE,應(yīng)利用其公共邊AC構(gòu)造等量關(guān)系,借助BC-BE=AD=80構(gòu)造方程關(guān)系式,進(jìn)而可求AC的值,再求出BC的答案.
解答 解:設(shè)AC=x,過點(diǎn)D作DE⊥BC于點(diǎn)E;
根據(jù)題意:在Rt△ABC中,有BC=AC×tan60°=$\sqrt{3}$x,
在Rt△BDE中,有BE=AC×tan30°=$\frac{\sqrt{3}}{3}$x,
且BC-BE=AD=30;即($\sqrt{3}$x-$\frac{\sqrt{3}}{3}$x)=30,
解可得:x=15$\sqrt{3}$;則BC=AC×tan60°=$\sqrt{3}$x=45米.
答:大廈的高BC為45米.
點(diǎn)評 本題考查了解直角三角形的應(yīng)用-仰角和俯角,借助仰角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形,正確的從實(shí)際問題中整理出直角三角形是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 55° | B. | 45° | C. | 35° | D. | 25° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3-2=-9 | B. | -0.000000137=-1.37×107 | ||
| C. | (a2)-3=$\frac{1}{{a}^{6}}$ | D. | -$\frac{x-1}{x-y}$=$\frac{x+1}{x-y}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{x}$+$\sqrt{2x}$=$\sqrt{3x}$ | B. | 3$\sqrt{2}$-2$\sqrt{2}$=1 | C. | 2+$\sqrt{5}$=2$\sqrt{5}$ | D. | 2$\sqrt{2}$-$\sqrt{2}$=$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{6}$ | B. | $\sqrt{8}$=3$\sqrt{2}$ | C. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | D. | $\sqrt{4}$×$\sqrt{2}$=2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com