| A. | 當(dāng)P為BC中點(diǎn),△APD是等邊三角形 | B. | 當(dāng)△ADE∽△BPE時(shí),P為BC中點(diǎn) | ||
| C. | 當(dāng)AE=2BE時(shí),AP⊥DE | D. | 當(dāng)△APD是等邊三角形時(shí),BE+CD=DE |
分析 A、先判斷出△APB≌△DPC,進(jìn)而可以得出∠APD=60°,即可得出結(jié)論;
B、雖然題目中有相似三角形和直角三角形,但沒有告訴線段與線段之間的倍數(shù)關(guān)系和沒出現(xiàn)含30°的直角三角形,所以沒辦法得出點(diǎn)P是BC的中點(diǎn);
C、先求出∠BAP,進(jìn)而得出∠ADE=∠PDE,即可判斷出△ADE≌△PDE,最后用三角形三線合一的性質(zhì)即可得出結(jié)論;
D、先求出∠BPE=∠APE=∠PAB=30°,再用含30°的直角三角形的性質(zhì)和勾股定理即可得出結(jié)論.
解答 解:A、∵四邊形ABCD是矩形,
∴AB=CD,∠A=∠B,
∵點(diǎn)P是BC的中點(diǎn),
∴PB=PC,
在△APB和△DPC中,$\left\{\begin{array}{l}{AB=DC}\\{∠ABP=∠DCP}\\{PB=PC}\end{array}\right.$,
∴△APB≌△DPC,
∴PA=PD,∠APB=∠DPC,
∵PD平分∠APC,
∴∠APD=∠CPD,
∴∠APB=∠APD=∠CPD,
∵∠APB+∠APD+∠CPD=180°,
∴∠APD=60°,
∵PA=PD,
∴△APD是等邊三角形;
∴A正確,故A不符合題意;
C、
∵PD⊥PE,
∴∠BPE+∠DPC=90°,∠APE+∠APD=90°,
∵∠APD=∠CPD,
∴∠APE=∠BPE,
∴$\frac{BP}{AP}=\frac{BE}{AE}$,
∵AE=2BE,
∴$\frac{BP}{AP}=\frac{1}{2}$,
在Rt△ABP中,sin∠BAP=$\frac{BP}{AP}=\frac{1}{2}$,
∴∠BAP=30°,
∴∠APB=60°,
∴∠BPE=∠APE=30°=∠BAP,
∴AE=PE,
∵EA⊥AD,EP⊥PD,
∴∠ADE=∠PDE,
在△ADE和△PDE中,$\left\{\begin{array}{l}{∠ADE=∠PDE}\\{∠DAE=∠DPE}\\{AE=PE}\end{array}\right.$,
∴△ADE≌△PDE,
∴∠AED=∠PED,
∵AE=PE,
∴DE⊥AP,
∴C正確,故C不符合題意;
D、∵△APD是等邊三角形,
∴AP=DP,∠APD=60°,
∴∠CPD=60°,
∴∠APB=60°,
∴∠BPE=∠APE=∠PAB=30°
∴AE=PE
設(shè)BE=a,
在Rt△PBE中,BP=$\sqrt{3}$BE=$\sqrt{3}$a,PE=2a,
∴AE=2a,
∴CD=AB=BE+AE=3a,
易證△APB≌△DPC,
∴PB=PC,
∴AD=BC=2BP=2$\sqrt{3}$a,
在Rt△ADE中,根據(jù)勾股定理,得,DE=$\sqrt{A{E}^{2}+A{D}^{2}}$=4a,
∵BE+CD=a+3a=4a=DE,
∴D正確,故D不符合題意;
∴符合題意的只有B.
故選B.
點(diǎn)評(píng) 此題是四邊形綜合題,主要考查了矩形的性質(zhì),等邊三角形的性質(zhì)和判定,等腰三角形的性質(zhì),含30°的直角三角形的性質(zhì),全等三角形的判定和性質(zhì),解本題的關(guān)鍵:A、判斷出△APB≌△DPC,C、求出∠BAP,D、求出∠BPE=∠APE=∠PAB=30°,是一道綜合性比較強(qiáng)的題目.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 等腰三角形 | B. | 等邊三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 一直增大 | B. | 一直減小 | C. | 先減小后增大 | D. | 先增大后減小 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 25° | B. | 60° | C. | 85° | D. | 95° |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com