分析 (1)根據(jù)平行線的性質(zhì),可得∠BAE=∠E=30°,再根據(jù)∠BAC=45°,即可得出∠CAE=45°-30°=15°;
(2)根據(jù)當(dāng)旋轉(zhuǎn)到AB與AE重疊時(shí),∠α=∠BAC即可得到結(jié)果;
(3)要分5種情況進(jìn)行討論:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC,分別畫出圖形,計(jì)算出度數(shù)即可;
(4)先設(shè)BD分別交AC、AE于點(diǎn)M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180,再根據(jù)∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,得出∠E+∠BDE+∠CAE+∠C+∠DBC=180°,然后根據(jù)∠C=30°,∠E=45°,即可得出∠BDE+∠CAE+∠DBC的度數(shù).
解答 解:(1)如圖2,當(dāng)AB∥DE時(shí),∠BAE=∠E=30°,
∵∠BAC=45°,
∴∠CAE=45°-30°=15°,
即∠α=15°,
故答案為:15;
(2)當(dāng)旋轉(zhuǎn)到AB與AE重疊時(shí),∠α=∠BAC=45°,
故答案為:45;
(2)當(dāng)△ADE的一邊與△ABC的某一邊平行(不共線)時(shí),旋轉(zhuǎn)角α的所有可能的度數(shù)為15°,45°,105°,135°,150°.如圖a-e所示:![]()
①當(dāng)AD∥BC時(shí),α=15°;②當(dāng)DE∥AB時(shí),α=45°;③當(dāng)DE∥BC時(shí),α=105°;④當(dāng)DE∥AC時(shí),α=135°;⑤當(dāng)AE∥BC時(shí),α=150°.
(4)如圖4,當(dāng)0°<α≤45°時(shí),∠DBC+∠CAE+∠BDE=105°,保持不變;![]()
理由如下:設(shè)BD分別交AC、AE于點(diǎn)M、N,
在△AMN中,∠AMN+∠CAE+∠ANM=180°,
∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,
∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,
∵∠C=30°,∠E=45°,
∴∠DBC+∠CAE+∠BDE=180°-75°=105°.
點(diǎn)評(píng) 本題考查了平行線的性質(zhì),三角形內(nèi)角和定理以及旋轉(zhuǎn)的性質(zhì)的運(yùn)用.解題時(shí)注意:旋轉(zhuǎn)變化前后,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,每一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線所構(gòu)成的旋轉(zhuǎn)角相等.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com