欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.如圖1,以△ABC的邊AB、AC為邊分別向外作等腰直角△ABD和等腰直角△ACE,AB=AD,AC=AE,∠DAB=∠EAC=90°,連接CD、BE、DE

(1)證明:△ADC≌△ABE;
(2)試判斷△ABC與△ADE面積之間的關(guān)系,并說(shuō)明理由;
(3)園林小路,曲徑通幽,如圖2所示,小路由白色的正方形大理石和黑色的三角形大理石鋪成,已知中間的所有正方形的面積之和是30平方米,內(nèi)圈的所有三角形的面積之和是20平方米,這條小路一共占地70平方米.(不用寫(xiě)過(guò)程)

分析 (1)由三角形ABD與三角形ACE都為等腰直角三角形,利用等腰直角三角形的性質(zhì)及等式的性質(zhì)得到∠DAC=∠BAE,利用SAS可得出△DAC≌△BAE,得證;
(2)過(guò)點(diǎn)C作CM⊥AB于M,過(guò)點(diǎn)G作GN⊥EA交EA延長(zhǎng)線于N,得出△ABC與△AEG的兩條高,等腰直角三角形的特殊性證明△ACM≌△AGN,是判斷△ABC與△ADE面積之間的關(guān)系的關(guān)鍵;
(3)同(2)道理知外圈的所有三角形的面積之和等于內(nèi)圈的所有三角形的面積之和,求出這條小路一共占地多少平方米

解答 (1)證明:∵△ABD和△ACE都為等腰直角三角形,
∴AD=AB,AE=AC,∠DAB=∠EAC=90°,
∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,
在△DAC和△BAE中,$\left\{\begin{array}{l}{AB=AD}\\{∠DAC=∠BAE}\\{AC=AE}\end{array}\right.$,
∴△DAC≌△BAE(SAS);
(2)△ABC與△ADE面積相等.
證明:∵△ABD和△ACE都是等腰直角三角形,
∴∠BAD=∠CAE=90°,AB=AD,AC=AE,
∵∠BAD+∠CAD+∠BAC+∠DAE=360°,
∴∠BAC+∠DAE=180°,
∵∠DAE+∠EAN=180°,
∴∠BAC=∠EAN,
在△ACM和△AEN中,$\left\{\begin{array}{l}{∠MAC=∠NAE}\\{∠AMC=∠ANE}\\{AC=AE}\end{array}\right.$
∴△ACM≌△AEN(AAS),
∴CM=EN,
∵S△ABC=$\frac{1}{2}$AB•CM,S△ADE=$\frac{1}{2}$AD•EN,
∴S△ABC=S△ADE
(3)解:由(2)知外圈的所有三角形的面積之和等于內(nèi)圈的所有三角形的面積之和.
∴這條小路的面積為(30+2×20)=70平方米.
故答案為:70.

點(diǎn)評(píng) 此題是四邊形綜合題,主要考查了正方形性質(zhì),全等三角形的判定和性質(zhì),巧妙地借助兩個(gè)三角形全等,尋找三角形面積之間的等量關(guān)系,解決問(wèn)題.由正方形的特殊性證明△ACM≌△ANE,是判斷△ABC與△ADE面積之間的關(guān)系的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.拋物線與x軸交于A,B兩點(diǎn),(點(diǎn)B在點(diǎn)A的左側(cè))且A,B兩點(diǎn)的坐標(biāo)分別為(-2,0)、(8,0),與y軸交于點(diǎn)C(0,-4),連接BC,以BC為一邊,點(diǎn)O為對(duì)稱中心作菱形BDEC,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線L交拋物線于點(diǎn)Q,交BD于點(diǎn)M.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),試探究m為何值時(shí),四邊形CQMD是平行四邊形?
(3)位于第四象限內(nèi)的拋物線上是否存在點(diǎn)N,使得△BCN的面積最大?若存在,求出N點(diǎn)的坐標(biāo),及△BCN面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC,BD為⊙O的直徑,AB=5,則CD=5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)直線BF垂直于CE于點(diǎn)F,交CD于點(diǎn)G(如圖l),求證:AE=CG;
(2)直線AH垂直于CE,垂足為H,交CD的延長(zhǎng)線于點(diǎn)M(如圖2),找出圖中與BE相等的線段(不需要添加輔助線),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.先化簡(jiǎn),再求值:(1-$\frac{2}{x}$)÷$\frac{{x}^{2}-4x+4}{{x}^{2}-4}$-$\frac{x+4}{x+2}$,其中x2+x-2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知(a-3)2+|b-2|=0,c和d互為倒數(shù),m與n互為相反數(shù),y為最大的負(fù)整數(shù),求(y+b)2+m(a+cd)+nb2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知a、b表示兩個(gè)不同點(diǎn)A、B的有理數(shù),且|a|=5,|b|=2,它們?cè)跀?shù)軸的位置如圖所示.
(1)試確定a、b的數(shù)值.
(2)表示a、b兩數(shù)的點(diǎn)相距多遠(yuǎn)?
(3)若C點(diǎn)在數(shù)軸上,C點(diǎn)到A點(diǎn)的距離是C點(diǎn)到B點(diǎn)距離的3倍,求C點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.當(dāng)(a-$\frac{1}{2}$)2+2有最小值時(shí),2a-3=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖1,已知AB=AC,D為∠BAC的角平分線上面一點(diǎn),連接BD,CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點(diǎn),連接BD,CD,BE,CE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點(diǎn),連接BD,CD,BE,CE,BF,CF;…,依次規(guī)律,第n個(gè)圖形中有全等三角形的對(duì)數(shù)是$\frac{1}{2}$n(n+1).

查看答案和解析>>