分析 (1)有三對全等的三角形,依次寫出;
(2)證明△AED≌△CFB,得AE=CF,∠AED=∠CFB,根據(jù)等角的補角相等得:∠AEB=∠CFE,所以AE∥CF,由一組對邊平行且相等的四邊形是平行四邊形得出結(jié)論.
解答 解:(1)①△AED≌△CFB,②△ABE≌△CDF,③△ABD≌△CDB;
理由是:①∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,
∴∠ADB=∠DBC,
在△AED和△CFB中,
∵$\left\{\begin{array}{l}{AD=BC}\\{∠ADB=∠DBC}\\{DE=BF}\end{array}\right.$,
∵△AED≌△CFB(SAS),
②∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,
∴∠ABD=∠BDC,
∵BF=DE,
∴AC-BF=AC-DE,
∴DF=BE,
在△ABE和△CDF中,
∵$\left\{\begin{array}{l}{AB=CD}\\{∠ABD=∠BDC}\\{BE=DF}\end{array}\right.$,
∴△ABE≌△CDF(SAS);
③在△ABD和△CDB中,
$\left\{\begin{array}{l}{AB=CD}\\{AD=BC}\\{BD=DB}\end{array}\right.$,
∴△ABD≌△CDB(SSS);
(2)四邊形AECF是平行四邊形,理由是:
由(1)得:△AED≌△CFB,
∴AE=CF,∠AED=∠CFB,
∴∠AEB=∠CFE,
∴AE∥FC,
∴四邊形AECF是平行四邊形.
點評 本題考查了平行四邊形的性質(zhì)和判定、全等三角形的性質(zhì)和判定,熟練掌握平行四邊形的判定方法是關鍵,常運用的判定方法是:一組對邊平行且相等的四邊形是平行四邊形.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 眾數(shù) | B. | 方差 | C. | 平均數(shù) | D. | 頻數(shù) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com