欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.如圖,在△ABC中,已知∠C=90°,sinA=$\frac{3}{5}$,以BC為半徑的⊙C交AC邊上一點(diǎn)D,若AD=4,求半徑BC的長(zhǎng).

分析 設(shè)⊙C的半徑為r,在Rt△ABC中,利用正弦的定義得到$\frac{r}{r+4}$=$\frac{4}{5}$,然后解方程求出r即可.

解答 解:設(shè)⊙C的半徑為r,
在Rt△ABC中,∵sinA=$\frac{BC}{AC}$=$\frac{4}{5}$,
即$\frac{r}{r+4}$=$\frac{4}{5}$,解得r=16.
所以半徑BC的長(zhǎng)為16.

點(diǎn)評(píng) 本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過(guò)程就是解直角三角形.解直角三角形要用到的關(guān)系:銳角直角的關(guān)系:∠A+∠B=90°;三邊之間的關(guān)系:a2+b2=c2;邊角之間的關(guān)系:銳角三角函數(shù)關(guān)系.也考查了圓的認(rèn)識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,正方形卡片A類(lèi),B類(lèi)和長(zhǎng)方形卡片C類(lèi)若干張,如果要拼一個(gè)長(zhǎng)為(a+2b),寬為(a+b)的大長(zhǎng)方形,則需要C類(lèi)卡片張數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.解方程組$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}=0}\\{{x}^{2}+xy-5{y}^{2}=-5}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,將菱形ABCD沿AC方向平移至A′B′C′D′,A′D′交CD于點(diǎn)C,A′B′交BC于點(diǎn)F,判斷A′FCE是不是菱形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知$\sqrt{5}$≈2.236,求5$\sqrt{\frac{1}{5}}$-$\frac{5}{4}$$\sqrt{\frac{4}{5}}$+$\sqrt{45}$的近似值(結(jié)果保留小數(shù)點(diǎn)后兩位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,AM是∠BAD的平分線,CM是∠BCD的平分線,AM、CM交于點(diǎn)M,CB、AM交于點(diǎn)F,AD、CM交于點(diǎn)G,AD、CB交于點(diǎn)E,∠B=32°,∠D=38°.
(1)求∠M的度數(shù);
(2)求∠B,∠M,∠D之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在?ABCD中,E、F分別為邊AB、CD的中點(diǎn),連接DE、BF、EF.
(1)寫(xiě)出圖中所有的平行四邊形(?ABCD除外);
(2)若點(diǎn)M是BC邊的中點(diǎn),連接AM分別交DE、EF、BF于點(diǎn)P、Q、R,求AP:PQ:QR:RM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.用加減消元法解方程組$\left\{\begin{array}{l}{4x+3y=2}\\{3x-4y=7}\end{array}\right.$時(shí),有下列四種變形,其中正確的是(  )
A.$\left\{\begin{array}{l}{12x+9y=2}\\{12x-16y=7}\end{array}\right.$B.$\left\{\begin{array}{l}{12x+3y=6}\\{12x-4y=28}\end{array}\right.$
C.$\left\{\begin{array}{l}{12x+9y=6}\\{12x-16y=28}\end{array}\right.$D.$\left\{\begin{array}{l}{16x+12y=2}\\{9x-12y=7}\end{array}\right.$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示,在△ABC中,∠BAC=90°,AD⊥BC,BE,AF分別是∠ABC,∠DAC的平分線,BE和AD交于G,試說(shuō)明四邊形AGFE的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案