分析 (1)根據(jù)方程有兩個(gè)不相等的實(shí)數(shù)根可得△=(2k+1)2-4(k2+1)=4k2+4k+1-4k2-4=4k-3>0,求出k的取值范圍;
(2)首先判斷出兩根均小于0,然后去掉絕對(duì)值,進(jìn)而得到2k+1=k2+1,結(jié)合k的取值范圍解方程即可.
解答 解:(1)∵原方程有兩個(gè)不相等的實(shí)數(shù)根,
∴△=(2k+1)2-4(k2+1)=4k2+4k+1-4k2-4=4k-3>0,
解得:k>$\frac{3}{4}$;
(2)∵k>$\frac{3}{4}$,
∴x1+x2=-(2k+1)<0,
又∵x1•x2=k2+1>0,
∴x1<0,x2<0,
∴|x1|+|x2|=-x1-x2=-(x1+x2)=2k+1,
∵|x1|+|x2|=x1•x2,
∴2k+1=k2+1,
∴k1=0,k2=2,
又∵k>$\frac{3}{4}$,
∴k=2.
點(diǎn)評(píng) 本題主要考查了根的判別式以及根與系數(shù)關(guān)系的知識(shí),解答本題的關(guān)鍵是利用根的判別式△=b2-4ac>0求出k的取值范圍,此題難度不大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 70 | B. | 65 | C. | 60 | D. | 55 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com