分析 (1)由題意可畫出圖形,設(shè)裁掉的正方形的邊長(zhǎng)為xdm,則題意可列出方程,可求得答案;
(2)由條件可求得x的取值范圍,用x可表示出總費(fèi)用,利用二次函數(shù)的性質(zhì)可求得其最小值,可求得答案.
解答 解:
(1)如圖所示:![]()
設(shè)裁掉的正方形的邊長(zhǎng)為xdm,
由題意可得(10-2x)(6-2x)=12,
即x2-8x+12=0,解得x=2或x=6(舍去),
答:裁掉的正方形的邊長(zhǎng)為2dm,底面積為12dm2;
(2)∵長(zhǎng)不大于寬的五倍,
∴10-2x≤5(6-2x),解得0<x≤2.5,
設(shè)總費(fèi)用為w元,由題意可知
w=0.5×2x(16-4x)+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24,
∵對(duì)稱軸為x=6,開口向上,
∴當(dāng)0<x≤2.5時(shí),w隨x的增大而減小,
∴當(dāng)x=2.5時(shí),w有最小值,最小值為25元,
答:當(dāng)裁掉邊長(zhǎng)為2.5dm的正方形時(shí),總費(fèi)用最低,最低費(fèi)用為25元.
點(diǎn)評(píng) 本題主要考查一元二次方程和二次函數(shù)的應(yīng)用,找出題目中的等量關(guān)系,表示成二次函數(shù)的形式是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com