分析 (1)由切線的性質(zhì)得出∠BME+∠OMB=90°,再由直徑得出∠AMB=90°,利用同角的余角相等判斷出結(jié)論;
(2)先在Rt△BEM中,用三角函數(shù)求出BM,再在Rt△ABM中,用三角函數(shù)和勾股定理計算即可.
解答
(1)如圖,連接OM.
∵直線CD切⊙O于點M.
∴∠OMD=90°.
∴∠BME+∠OMB=90°.
∵AB為⊙O的直徑.
∴∠AMB=90°.
∴∠AMO+∠OMB=90°.
∴∠BME=∠AMO.
∵OA=OM.
∴∠MAB=∠AMO.
∴∠BME=∠MAB;
(2)由(1)可得,∠BME=∠MAB.
∵sin∠BAM=$\frac{3}{5}$,
∴sin∠BME=$\frac{3}{5}$
在Rt△BEM中,BE=$\frac{18}{5}$.
∴sin∠BME=$\frac{BE}{BM}$=$\frac{3}{5}$.
∴BM=6,在Rt△ABM中,sin∠BAM=$\frac{3}{5}$.
∴sin∠BAM=$\frac{BM}{AB}$=$\frac{3}{5}$.
∴AB=$\frac{3}{5}$BM=10.
∴⊙O的半徑=5
點評 本題主要考查了切線的性質(zhì),直徑所對的圓周角是直徑,相似三角形的性質(zhì)和判定,三角函數(shù),作出恰當(dāng)?shù)妮o助線是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 銷售價格x(元/千克) | 30 | 35 | 40 | 45 | 50 |
| 日銷售量p(千克) | 600 | 450 | 300 | 150 | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com