分析 (1)求出∠DAC=30°,即可求出∠DAB=90°,根據(jù)切線的判定推出即可;
(2)連接OE,分別求出△AOE、△AOC,扇形OEG的面積,即可求出答案.
解答 (1)證明:∵△ABC為等邊三角形,
∴AC=BC,
又∵AC=CD,
∴AC=BC=CD,
∴△ABD為直角三角形,
∴AB⊥AD,
∵AB為直徑,
∴AD是⊙O的切線;
(2)解:連接OE,![]()
∵OA=OE,∠BAC=60°,
∴△OAE是等邊三角形,
∴∠AOE=60°,
∵CB=BA,OA=OB,
∴CO⊥AB,
∴∠AOC=90°,
∴∠EOC=30°,
∵△ABC是邊長為4的等邊三角形,
∴AO=2,由勾股定理得:OC=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
同理等邊三角形AOE邊AO上高是$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
S陰影=S△AOC-S等邊△AOE-S扇形EOG=$\frac{1}{2}•2•2\sqrt{3}-\frac{1}{2}•2•\sqrt{3}-\frac{30•π•{2}^{2}}{360}$=$\sqrt{3}-\frac{π}{3}$.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì)和判定,勾股定理,三角形面積,扇形的面積,切線的判定的應(yīng)用,能綜合運(yùn)用定理進(jìn)行推理和計(jì)算是解此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x=2 | B. | x=1 | C. | x=0 | D. | 無實(shí)數(shù)解 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 18次 | B. | 12次 | C. | 8次 | D. | 4次 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 9cm | B. | 8cm | C. | 7cm | D. | 6cm |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com