分析 (1)根據(jù)角平分線的定義可得∠EBD=∠CBD,∠FCD=∠BCD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠EDB=∠CBD,∠FDC=∠BCD,然后求出∠EBD=∠EDB,∠FDC=∠BCD,再根據(jù)等角對等邊可得BE=DE,CF=DF,然后解答即可;
(2)根據(jù)角平分線的定義可得∠EBD=∠CBD,∠FCD=∠BCD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠EDB=∠CBD,∠FDC=∠BCD,然后求出∠EBD=∠EDB,∠FDC=∠BCD,再根據(jù)等角對等邊可得BE=DE,CF=DF,然后解答即可;
(3)由(2)知BE=ED,CF=DF,然后利用等量代換即可證明BE、CF、EF有怎樣的數(shù)量關(guān)系;
(4)根據(jù)角平分線的定義可得∠EBD=∠CBD,∠FCD=∠BCD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠EDB=∠CBD,∠FDC=∠BCD,然后求出∠EBD=∠EDB,∠FDC=∠BCD,再根據(jù)等角對等邊可得BE=DE,CF=DF,然后解答即可.
解答 解:(1)BE+CF=EF.理由如下:
∵AB=AC,
∴∠ABC=∠ACB,
∵BD平分∠ABC,CD平分∠ACB,
∴∠EBD=∠CBD,∠FCD=∠BCD,
∴∠DBC=∠DCB,
∴DB=DC
∵EF∥BC,
∴∠AEF=∠ABC,∠AFE=∠ACB,∠EDB=∠CBD,∠FDC=∠BCD,
∴∠EBD=∠EDB,∠FDC=∠BCD,
∴BE=DE,CF=DF,AE=AF,
∴等腰三角形有△ABC,△AEF,△DEB,△DFC,△BDC共5個,
∴BE+CF=DE+DF=EF,
即BE+CF=EF,
故答案為:5,△ABC,△AEF,△DEB,△DFC,△BDC,BE+CF=EF.
(2)BE+CF=EF,
∵BD平分∠ABC,CD平分∠ACB,
∴∠EBD=∠CBD,∠FCD=∠BCD,
∵EF∥BC,
∴∠EDB=∠CBD,∠FDC=∠BCD,
∴∠EBD=∠EDB,∠FDC=∠BCD,
∴BE=DE,CF=DF,
∴等腰三角形有△BDE,△CFD,
∴BE+CF=DE+DF=EF,
即BE+CF=EF,
故答案為:△BDE,△CFD,BE+CF=EF;
(3)BE-CF=EF,
由(1)知BE=ED,
∵EF∥BC,∴∠EDC=∠DCG=∠ACD,
∴CF=DF,
又∵ED-DF=EF,
∴BE-CF=EF;
(4)BE+CF=EF,
∵BD平分∠EBC,CD平分∠ECB,
∴∠EBD=∠CBD,∠FCD=∠BCD,
∵EF∥BC,
∴∠EDB=∠CBD,∠FDC=∠BCD,
∴∠EBD=∠EDB,∠FDC=∠BCD,
∴BE=DE,CF=DF,
∴BE+CF=DE+DF=EF,
∴BE+CF=EF.
點評 本題考查了等腰三角形的判定和性質(zhì),平行線的性質(zhì),平行線的性質(zhì),關(guān)鍵是推出DE=BE和CF=DF.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 3a+8的意義是3a與8的和 | |
| B. | 4(m+3)的意義是4與m+3的積 | |
| C. | a2-2b的意義是a的平方與b的差的2倍 | |
| D. | a2+b2的意義是a與b的平方和 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com