分析 先分別解兩個不等式得到不等式組的解集為a≤x<$\frac{3}{2}$,則可確定不等式組的整數(shù)解為1,0,-1,-2,-3,于是可得到a的范圍.
解答 解:$\left\{\begin{array}{l}{x-a≥0①}\\{2-2x>-1②}\end{array}\right.$,
解①得x≥a,
解②得x<$\frac{3}{2}$,
所以不等式組的解集為a≤x<$\frac{3}{2}$,
而不等式組的整數(shù)解共有5個,即1,0,-1,-2,-3,
所以-4<a≤-3.
故答案為-4<a≤-3.
點(diǎn)評 本題考查了一元一次不等式組的整數(shù)解:已知解集(整數(shù)解)求字母的取值.一般思路為:先把題目中除未知數(shù)外的字母當(dāng)做常數(shù)看待解不等式組或方程組等,然后再根據(jù)題目中對結(jié)果的限制的條件得到有關(guān)字母的代數(shù)式,最后解代數(shù)式即可得到答案.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{(-9)(-4)}=\sqrt{-9}•\sqrt{-4}=(-3)(-2)=6$ | B. | $\sqrt{8}-\sqrt{2}=\sqrt{2}$ | ||
| C. | $\sqrt{{3^2}+{4^2}}=3+4=7$ | D. | $\frac{{6-\sqrt{2}}}{{\sqrt{2}}}=3\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2-a | B. | -2-a | C. | $\frac{1}{2-a}$ | D. | $-\frac{1}{2+a}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5}{13}$ | B. | $\frac{5}{12}$ | C. | $\frac{{3\sqrt{13}}}{13}$ | D. | $\frac{{2\sqrt{13}}}{13}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com