分析 設(shè)∠EDB=a,根據(jù)等邊對等角得出∠A=∠AED,∠EBD=∠EDB=a,∠C=∠BDC,根據(jù)三角形外角性質(zhì)求出∠A=∠AED=2a,∠C=∠CDB=∠ABC=3a,根據(jù)三角形內(nèi)角和定理得出2a+3a+3a=180°,求出a即可.
解答 解:設(shè)∠EDB=a,
∵AD=DE=BE,BD=BC,AC=AB,
∴∠A=∠AED,∠EBD=∠EDB=a,∠C=∠BDC=∠ABC,
∵∠AED=∠EBD+∠EDB=2∠EBD,
∴∠A=2∠EBD=2a,
∵∠BDC=∠A+∠EBD=3∠EBD=3a,
∴∠C=3∠EBD=3a,
∵∠A+∠C+∠ABC=180°,
∴2a+3a+3a=180°,
∴a=22.5°.
∴∠EDB=22.5°.
點評 本題考查了等腰三角形的性質(zhì)及三角形的內(nèi)角和定理、三角形外角的性質(zhì);解題中反復(fù)運用了“等邊對等角”,將已知的等邊轉(zhuǎn)化為有關(guān)角的關(guān)系,并聯(lián)系三角形的內(nèi)角和及三角形一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì)求解有關(guān)角的度數(shù)問題.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com