分析 (1)根據(jù)折疊的性質(zhì),得出∠ABD'+∠E'BQ=$\frac{1}{2}$∠DBE'+$\frac{1}{2}$∠EBE'=$\frac{1}{2}$∠DBE=90°,即可得到AB與BQ的位置關(guān)系;
(2)根據(jù)折疊的性質(zhì)得出∠DBE'=60°,再根據(jù)平行線的性質(zhì),得到∠BE'Q=∠DBE'=60°,再根據(jù)∠BE'C'=∠E=90°,即可得出∠CE′C′的度數(shù).
解答
解:(1)由折疊可得,∠ABD=∠ABD',∠EBQ=∠E'BQ,
∴∠ABD'=$\frac{1}{2}$∠DBE',∠E'BQ=$\frac{1}{2}$∠EBE',
∴∠ABD'+∠E'BQ=$\frac{1}{2}$∠DBE'+$\frac{1}{2}$∠EBE'=$\frac{1}{2}$∠DBE=90°,
∴∠ABQ=90°,
∴AB⊥BQ;
(2)當(dāng)折角∠ABD=30°時(shí),∠DBE'=60°,
∵DE∥FC,
∴∠BE'Q=∠DBE'=60°,
又∵∠BE'C'=∠E=90°,
∴∠CE'C'=90°-60°=30°,
故∠CE′C′的度數(shù)為30°.
點(diǎn)評(píng) 本題主要考查了折疊的性質(zhì)以及矩形的性質(zhì)的運(yùn)用,解題時(shí)注意:折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com