分析 首先連接OB,OC,過(guò)點(diǎn)O作OD⊥BC于D,由⊙O是等邊△ABC的外接圓,即可求得∠OBC的度數(shù),然后由三角函數(shù)的性質(zhì)即可求得OD的長(zhǎng),又由垂徑定理即可求得等邊△ABC的邊長(zhǎng).
解答
解:連接OB,OC,過(guò)點(diǎn)O作OD⊥BC于D,
∴BC=2BD,
∵⊙O是等邊△ABC的外接圓,
∴∠BOC=$\frac{1}{3}$×360°=120°,
∵OB=OC,
∴∠OBC=∠OCB=$\frac{180°-∠BOC}{2}$=$\frac{180°-120°}{2}$=30°,
∵⊙O的半徑為2,
∴OB=2,
∴BD=OB•cos∠OBD=2×cos30°=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴BC=2BD=2$\sqrt{3}$.
∴等邊△ABC的邊長(zhǎng)為2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了垂徑定理,圓的內(nèi)接等邊三角形,以及三角函數(shù)的性質(zhì)等知識(shí).此題難度不大,解題的關(guān)鍵是掌握數(shù)形結(jié)合思想的應(yīng)用與輔助線(xiàn)的作法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | 0 | C. | -2 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{2}{a}$+$\frac{3}$=$\frac{5}{ab}$ | B. | $\frac{3}{3a+b}$=$\frac{1}{a+b}$ | C. | $\frac{ab}{ab-^{2}}$=$\frac{a}{a-b}$ | D. | $\frac{a}{-a+b}$=-$\frac{a}{a+b}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 這個(gè)球可能是白球 | |
| B. | 摸到黑球、白球的可能性的大小一樣 | |
| C. | 這個(gè)球一定是黑球 | |
| D. | 事先能確定摸到什么顏色的球 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com