| A. | 12cm | B. | 20cm | C. | 24cm | D. | 28cm |
分析 設(shè)這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,利用等腰直徑三角形的性質(zhì)得到AB=$\sqrt{2}$R,利用圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長等于圓錐底面的周長得到2πr=$\frac{90•π•\sqrt{2}R}{180}$,解得r=$\frac{\sqrt{2}}{4}$R,然后利用勾股定理得到($\sqrt{2}$R)2=(3$\sqrt{30}$)2+($\frac{\sqrt{2}}{4}$R)2,再解方程求出R即可得到這塊圓形紙片的直徑.
解答 解:設(shè)這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,則AB=$\sqrt{2}$R,
根據(jù)題意得2πr=$\frac{90•π•\sqrt{2}R}{180}$,解得r=$\frac{\sqrt{2}}{4}$R,
所以($\sqrt{2}$R)2=(3$\sqrt{30}$)2+($\frac{\sqrt{2}}{4}$R)2,解得R=12,
所以這塊圓形紙片的直徑為24cm.
故選C.
點(diǎn)評(píng) 本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∵∠1=∠2,∴a∥b | B. | ∵b∥c,∴∠2=∠4 | ||
| C. | ∵a∥b,b∥c,∴a∥c | D. | ∵∠2+∠3=180°,∴a∥c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{\sqrt{3}}{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 60° | B. | 50° | C. | 40° | D. | 30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 眾數(shù) | B. | 中位數(shù) | C. | 方差 | D. | 以上都不對(duì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2.5 | B. | $\frac{1}{3}$ | C. | 0 | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com