分析 (1)只要證明△CBD∽△CAB即可解決問(wèn)題;
(2)如圖2中,連接DE,作EM⊥BD于M,EN⊥CD于N.首先證明△EMF∽△ENG,推出$\frac{EM}{EN}$=$\frac{EF}{EG}$=$\sqrt{5}$,由BE=EC,推出S△BED=S△ECD,推出$\frac{1}{2}$•BD•EM=$\frac{1}{2}$•DC•EN,推出$\frac{BD}{DC}$=$\frac{EN}{EM}$=$\frac{\sqrt{5}}{5}$,由△CBD∽△CAB,可得$\frac{BD}{AB}$=$\frac{CD}{CB}$,推出$\frac{AB}{BC}$=$\frac{BD}{CD}$,由此即可解決問(wèn)題.
(3)如圖3中,連接DE,作EM⊥BD于M,EN⊥CD于N.首先證明△EMF∽△ENG,推出$\frac{EM}{EN}$=$\frac{EF}{EG}$=k,由BE=nEC,推出S△BED=nS△ECD,推出$\frac{1}{2}$•BD•EM=$\frac{1}{2}$•DC•EN,推出$\frac{BD}{DC}$=n•$\frac{EN}{EM}$=$\frac{n}{k}$,由△CBD∽△CAB,可得$\frac{BD}{AB}$=$\frac{CD}{CB}$,推出$\frac{AB}{BC}$=$\frac{BD}{CD}$,由此即可解決問(wèn)題.
解答 (1)證明:如圖1中,![]()
∵∠C=∠C,∠DBC=∠BAC,
∴△CBD∽△CAB,
∴$\frac{CB}{CA}$=$\frac{CD}{CB}$,
∴BC2=CD•AC.
(2)解:如圖2中,連接DE,作EM⊥BD于M,EN⊥CD于N.![]()
在四邊形DFEG中,∵∠FDG+∠FEG=180°,
∴∠DFE+∠DGE=180°,∵∠EFM+∠DFE=180°,
∴∠EFM=∠EGN,
∵∠EMF=∠ENG=90°,
∴△EMF∽△ENG,
∴$\frac{EM}{EN}$=$\frac{EF}{EG}$=$\sqrt{5}$,
∵BE=EC,
∴S△BED=S△ECD,
∴$\frac{1}{2}$•BD•EM=$\frac{1}{2}$•DC•EN,
∴$\frac{BD}{DC}$=$\frac{EN}{EM}$=$\frac{\sqrt{5}}{5}$,
∵△CBD∽△CAB,
∴$\frac{BD}{AB}$=$\frac{CD}{CB}$,
∴$\frac{AB}{BC}$=$\frac{BD}{CD}$=$\frac{\sqrt{5}}{5}$
(3)如圖3中,連接DE,作EM⊥BD于M,EN⊥CD于N.![]()
在四邊形DFEG中,∵∠FDG+∠FEG=180°,
∴∠DFE+∠DGE=180°,∵∠EFM+∠DFE=180°,
∴∠EFM=∠EGN,
∵∠EMF=∠ENG=90°,
∴△EMF∽△ENG,
∴$\frac{EM}{EN}$=$\frac{EF}{EG}$=K
∵BE=nEC,
∴S△BED=nS△ECD,
∴$\frac{1}{2}$•BD•EM=n$\frac{1}{2}$•DC•EN,
∴$\frac{BD}{DC}$=n•$\frac{EN}{EM}$=$\frac{n}{k}$
∵△CBD∽△CAB,
∴$\frac{BD}{AB}$=$\frac{CD}{CB}$,
∴$\frac{AB}{BC}$=$\frac{BD}{CD}$=$\frac{n}{k}$.
點(diǎn)評(píng) 本題考查相似形綜合題、相似三角形的判定和性質(zhì)、三角形的面積等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線(xiàn),構(gòu)造相似三角形解決問(wèn)題,學(xué)會(huì)用轉(zhuǎn)化的首先思考問(wèn)題,屬于中考?jí)狠S題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (4$\sqrt{2}$,-4$\sqrt{2}$) | B. | (-4$\sqrt{2}$,4$\sqrt{2}$) | C. | (-8$\sqrt{2}$,8$\sqrt{2}$) | D. | (30,30) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com