分析 (1)利用三角形的外角的性質(zhì)得出答案即可;
(2)利用∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC得出∠BAD=∠EDC,進而求出△ABD≌△DCE;
(3)根據(jù)等腰三角形的判定以及分類討論得出即可.
解答 解(1)∵AB=AC,
∴∠B=∠C=$\frac{1}{2}$(180°-∠BAC)=40°,
∵∠1=∠C,
∴∠1=∠B=40°,
∵∠ADC=∠B+∠BAD,∠ADC=∠1+∠EDC.
∴∠EDC=∠BAD=20°
(2)當(dāng)DC=5時,△ABD≌△DCE;
理由:∵∠ADE=40°,∠B=40°,
又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.
∴∠BAD=∠EDC.
在△ABD和△DCE中,
$\left\{\begin{array}{l}{∠B=∠C}\\{AB=CD}\\{∠BAD=∠EDC}\end{array}\right.$,
∴△ABD≌△DCE(ASA);
(3)當(dāng)∠BAD=30°時,
∵∠B=∠C=40°,
∴∠BAC=100°,
∵∠ADE=40°,∠BAD=30°,
∴∠DAE=70°,
∴∠AED=180°-40°-70°=70°,
∴DA=DE,這時△ADE為等腰三角形;
當(dāng)∠BAD=60°時,∵∠B=∠C=40°,
∴∠BAC=100°,
∵∠ADE=40°,∠BAD=60°,∠DAE=40°,
∴EA=ED,這時△ADE為等腰三角形.
點評 此題主要考查了全等三角形的判定與性質(zhì)和三角形內(nèi)角和定理以及等腰三角形的性質(zhì)等知識,根據(jù)已知得出△ABD≌△DCE是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 成績(分) | 49.5-59.5 | 59.5-69.5 | 69.5-79.5 | 79.5-89.5 | 89.5-100.5 |
| 頻數(shù)(人) | 20 | 32 | a | b | c |
| 頻率 | 0.08 | 0.20 | 0.36 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com