分析 (1)在△ABM中,依據(jù)三角形的內(nèi)角和定理可求得∠AMB的度數(shù);
(2)由等邊三角形的性質(zhì)可知∠B=∠α=∠AMB=60°;
(3)當(dāng)∠CNP=90°時(shí),依據(jù)對(duì)頂角相等可求得∠ANF=90°,然后依據(jù)∠F=60°可求得∠FAN的度數(shù),由旋轉(zhuǎn)的定義可求得∠α的度數(shù);當(dāng)∠CPN=90°時(shí).由∠C=30°,∠CPN=90°,可求得∠CNP的度數(shù),然后依據(jù)對(duì)頂角相等可得到∠ANF的度數(shù),然后由∠F=60°,依據(jù)三角形的內(nèi)角和定理可求得∠FAN的度數(shù),于是可得到∠α的度數(shù).
解答 解:(1)∵∠B=60°,∠α=20°,
∴∠AMB=180°-60°-20°=100°.
故答案為:100°.
(2)∵△ABM為正三角形,
∴∠B=∠α=∠AMB=60°.
故答案為:60°.
(3)如圖1所示:當(dāng)∠CNP=90°時(shí).![]()
∵∠CNP=90°,
∴∠ANF=90°.
又∵∠AFN=60°,
∴∠FAN=180°-60°-90°=30°.
∴∠α=30°.
如圖2所示:當(dāng)∠CPN=90°時(shí).![]()
∵∠C=30°,∠CPN=90°,
∴∠CNP=60°.
∴∠ANF=60°.
又∵∠F=60°,
∴∠FAN=60°.
∴∠α=60°.
綜上所述,∠α=30°或60°.
點(diǎn)評(píng) 本題主要考查的是幾何變換的綜合應(yīng)用,解答本題主要應(yīng)用了旋轉(zhuǎn)的性質(zhì)、三角形的內(nèi)角和定理、等邊三角形的性質(zhì),分類討論是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| m | 5 | -5 | -6 | -6 | -10 | -2.5 |
| n | 3 | 0 | 4 | -4 | 2 | -2.5 |
| A、B兩點(diǎn)間距離 | 2 | 5 | 10 | 2 | 12 | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com