分析 (1)連接OA,由OA=OB,OA=OC,利用等邊對(duì)等角即可.
(2)同(1),連接OA,由OA=OB,OA=OC,利用等邊對(duì)等角即可證得結(jié)論成立.
解答
(1)證明:連接OA,
∵OA=OB,OA=OC,
∴∠BAO=∠B,∠CAO=∠C,
∴∠BAC=∠BAO+∠CAO=∠B+∠C.
(2)成立.
理由:連接OA,
∵OA=OB,OA=OC,
∴∠BAO=∠B,∠CAO=∠C,
∴∠BAC=∠BAO+∠CAO=∠B+∠C;
點(diǎn)評(píng) 此題考查了圓周角的性質(zhì)、等腰三角形的性質(zhì).此題比較簡(jiǎn)單,解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意準(zhǔn)確作出輔助線.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2a | B. | 2b | C. | -2a | D. | -2b |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com