分析 (1)由于已知拋物線與x軸的交點(diǎn)坐標(biāo),則可利用交點(diǎn)式求出拋物線解析式;
(2)根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,可設(shè)P(t,-t2+4t-3),根據(jù)三角形面積公式得到$\frac{1}{2}$•2•|-t2+4t-3|=1,然后去絕對(duì)值得到兩個(gè)一元二次方程,再解方程求出t即可得到P點(diǎn)坐標(biāo).
解答 解:(1)拋物線解析式為y=-(x-1)(x-3)=-x2+4x-3;
(2)設(shè)P(t,-t2+4t-3),
因?yàn)镾△PAB=1,AB=3-1=2,
所以$\frac{1}{2}$•2•|-t2+4t-3|=1,
當(dāng)-t2+4t-3=1時(shí),t1=t2=2,此時(shí)P點(diǎn)坐標(biāo)為(2,1);
當(dāng)-t2+4t-3=-1時(shí),t1=2+$\sqrt{2}$,t2=2-$\sqrt{2}$,此時(shí)P點(diǎn)坐標(biāo)為(2+$\sqrt{2}$,-1)或(2-$\sqrt{2}$,-1),
所以滿足條件的P點(diǎn)坐標(biāo)有3個(gè),它們是(2,1)或(2+$\sqrt{2}$,-1)或(2-$\sqrt{2}$,-1).
點(diǎn)評(píng) 本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時(shí),要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.一般地,當(dāng)已知拋物線上三點(diǎn)時(shí),常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當(dāng)已知拋物線的頂點(diǎn)或?qū)ΨQ軸時(shí),常設(shè)其解析式為頂點(diǎn)式來求解;當(dāng)已知拋物線與x軸有兩個(gè)交點(diǎn)時(shí),可選擇設(shè)其解析式為交點(diǎn)式來求解.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 甲-M,乙-N,丙-P | B. | 甲-M,乙-P,丙-N | C. | 甲-N,乙-P,丙-M | D. | 甲-P,乙-N,丙-M |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com