分析 (1)由正方形ABCD,得到四條邊相等,四個角為直角,利用SAS即可得證;
(2)由(1)△BCE≌△CDF,得到一對角相等,利用同角的余角相等及垂直的定義即可得證;
(3)連接DE,首先證明△DGE是直角三角形,利用勾股定理結合正方形的性質即可求出AE,進一步得出BE.
解答
解:(1)∵四邊形ABCD是正方形,
∴DC=BC,∠DCF=∠B=90°,
在△DCF和△CBE中,
$\left\{\begin{array}{l}{BE=CF}\\{∠DCF=∠B}\\{BC=DC}\end{array}\right.$,
∴△DCF≌△CBE(SAS);
(2)∵△DCF≌△CBE,
∴∠CDF=∠ECB,
∵∠ECB+∠GCD=90°,
∴∠CDF+∠GCD=90°,即∠DGC=90°,
則CE⊥DF;
(3)如圖,連接DE,
∵△DCF≌△CBE,
∴∠BCE=∠CDF,
∵∠CDF+∠DFC=90°,
∴∠BCE+∠DFC=90°,
∴∠CGF=90°;
∴∠EGD=90°,
∴△DGE是直角三角形,
∵DE2=DG2+GE2=18,
∵CD=4,
∴AD=CD=4,
∴AE=$\sqrt{D{E}^{2}-C{D}^{2}}$=$\sqrt{18-16}$=$\sqrt{2}$,
∴BE=AB-AE=4-$\sqrt{2}$.
故答案為:(3)4-$\sqrt{2}$.
點評 此題考查了四邊形綜合題,涉及到了全等三角形的判定與性質,勾股定理,以及正方形的性質,熟練掌握全等三角形的判定與性質是解本題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
| x | … | -3 | -$\frac{5}{2}$ | -2 | -1 | 0 | 1 | 2 | $\frac{5}{2}$ | 3 | … |
| y | … | 3 | $\frac{5}{4}$ | m | -1 | 0 | -1 | 0 | $\frac{5}{4}$ | 3 | … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 方案一 | B. | 方案二 | C. | 方案三 | D. | 方案四 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com