分析 通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,設(shè)EC=x,BE=y,由勾股定理就可以得出x與y的關(guān)系,表示出BE與EF,于是得到結(jié)論.
解答 解:∵四邊形ABCD是正方形,△AEF是等邊三角形,
∴AB=AD,AE=AF,∠B=∠D,=90°,
在Rt△ABE和Rt△ADF中,$\left\{\begin{array}{l}{AB=AD}\\{AE=AF}\end{array}\right.$,
∴Rt△ABE≌Rt△ADF,
∴BE=DF,故①正確,
∵BC=DC,
∴CE=CF,
∴⑤△CEF為等腰直角三角形,
由于AE=AF,CW=CF,
∴AC垂直平分EF,故③⑤正確,
∵△AEF是等邊三角形,∴∠AEF=60°,故②錯(cuò)誤,
設(shè)EC=x,由勾股定理,得
EF=$\sqrt{2}$x,CG=$\frac{\sqrt{2}}{2}$x,
AG=AEsin60°=EFsin60°=2×CGsin60°=$\frac{\sqrt{6}}{2}$x,
∴AC=$\frac{\sqrt{6}x+\sqrt{2}x}{2}$,
∴AB=$\frac{\sqrt{3}x+x}{2}$,
∴BE=$\frac{\sqrt{3}x+x}{2}$-x=$\frac{\sqrt{3}x-x}{2}$,
∴BE+DF=$\sqrt{3}$x-x≠$\sqrt{2}$x,故④錯(cuò)誤,
故答案為:①③⑤.
點(diǎn)評(píng) 本題主要考查了全等三角形的判斷和性質(zhì),等邊三角形和正方形的性質(zhì),線段垂直平分線的性質(zhì)和判定,證得Rt△ABE≌Rt△ADF是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1≤m≤$\frac{1}{2}$ | B. | -1≤m≤1 | C. | -$\frac{1}{2}$≤m≤1 | D. | 0≤m≤1 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com