分析 (1)由OA、OB長是關(guān)于x的方程x2-mx+12=0的兩實(shí)根,得OA•OB=12,而OA=4,所以O(shè)B=3,又由于OB為⊙M的直徑,即可得到⊙M的半徑.
(2)連MD,OC,由OB為⊙M的直徑,得∠OCB=90°,則∠OCD=90°,由于D為OA的中點(diǎn),所以CD=$\frac{1}{2}$OA=OD,因此可證明△MCD≌△MOD,所以∠MCD=∠MOD=90°,即CD是⊙M的切線;
(3)利用∠CND=∠CND,∠NOM=∠NCD=90°證得△NOM∽△NCD,然后根據(jù)相似三角形的性質(zhì)列出比例式求解即可.
解答
解:(1)OA、OB長是關(guān)于x的方程x2-mx+12=0的兩實(shí)根,OA=4,則OA×OB=12,
得OB=3,
故⊙M的半徑為1.5;
(2)∵BM=CM=1.5,
∴∠OBA=∠BCM.
連結(jié)OC,OB是⊙M的直徑,則∠ACO=90°,D為OA的中點(diǎn)
∴OD=AD=CD=2,
∴∠OAC=∠ACD,
又∠OAC+∠OBA=90°,
∴∠BCM+∠ACD=90°,
∴∠NCD=90°,
∴CD是⊙M的切線.
(3)由題得∠CND=∠CND,∠NOM=∠NCD=90°,
∴△NOM∽△NCD,
∴$\frac{NO}{NC}$=$\frac{OM}{CD}$,即$\frac{NO}{\sqrt{(NO+2)^{2}-{2}^{2}}}$=$\frac{15}{2}$,
∴NO=$\frac{36}{7}$.
點(diǎn)評 本題考查了圓的切線的判定方法.經(jīng)過半徑的外端點(diǎn)與半徑垂直的直線是圓的切線.當(dāng)已知直線過圓上一點(diǎn),要證明它是圓的切線,則要連接圓心和這個點(diǎn),證明這個連線與已知直線垂直即可;當(dāng)沒告訴直線過圓上一點(diǎn),要證明它是圓的切線,則要過圓心作直線的垂線,證明垂線段等于圓的半徑.同時考查了直徑所對的圓周角為90度,直角三角形斜邊上的中線等于斜邊的一半以及三角形全等的判定和性質(zhì).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | m>$\frac{{3\sqrt{3}}}{4}$ | B. | m≤$\frac{{3\sqrt{3}}}{4}$且m≠0 | C. | m>$\frac{{\sqrt{3}}}{4}$ | D. | m≤$\frac{{\sqrt{3}}}{4}$且m≠0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com