分析 (1)利用勾股定理的逆定理得出△ABC是直角三角形,進(jìn)而利用三角形面積得出CD的長,進(jìn)而得出海港C是否受臺(tái)風(fēng)影響;
(2)利用勾股定理得出ED以及EF的長,進(jìn)而得出臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間.
解答
解:(1)海港C受臺(tái)風(fēng)影響.
理由:如圖,過點(diǎn)C作CD⊥AB于D,
∵AC=300km,BC=400km,AB=500km,
∴AC2+BC2=AB2.
∴△ABC是直角三角形.
∴AC×BC=CD×AB
∴300×400=500×CD
∴CD=$\frac{300×400}{500}$=240(km)
∵以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域,
∴海港C受到臺(tái)風(fēng)影響.
(2)當(dāng)EC=250km,F(xiàn)C=250km時(shí),正好影響C港口,
∵ED=$\sqrt{E{C^2}-C{D^2}}$=70(km),
∴EF=140km
∵臺(tái)風(fēng)的速度為20km/h,
∴140÷20=7(小時(shí))
即臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間為7小時(shí).
點(diǎn)評(píng) 本題考查的是勾股定理在實(shí)際生活中的運(yùn)用,解答此類題目的關(guān)鍵是構(gòu)造出直角三角形,再利用勾股定理解答.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com