分析 (1)①點(diǎn)D在直線y=2x+6上,分三種情況進(jìn)行討論:①D為直角頂點(diǎn);②A為直角頂點(diǎn);③P為直角頂點(diǎn),分別求出D坐標(biāo)即可;
(2)點(diǎn)D在直線y=2x-6上,也需分三種情況討論;①A為直角頂點(diǎn);②P為直角頂點(diǎn);③D為直角頂點(diǎn),分別結(jié)合全等三角形的判定和性質(zhì)進(jìn)行求出D坐標(biāo)即可.
解答 解:易知:A(0,6),C(8,0),AB=8,OA=BC=6;
則點(diǎn)A正好位于直線y=2x+6上;![]()
(1)當(dāng)點(diǎn)D位于直線y=2x+6上時(shí),分三種情況:
①點(diǎn)P為直角頂點(diǎn),顯然此時(shí)點(diǎn)D位于第四象限,不合題意;
②點(diǎn)D為直角頂點(diǎn),那么∠DAP=45°,結(jié)合圖形2可知:∠DAB>45°,
而點(diǎn)P位于線段BC上,故不存在這樣的等腰直角三角形;
③點(diǎn)A為直角頂點(diǎn),如圖1;
過D作DE⊥y軸于E,則△ADE≌△APB,得:AE=AB=8;
即點(diǎn)D的縱坐標(biāo)為14,代入y=2x+6中,可求得點(diǎn)D(4,14);
(2)當(dāng)點(diǎn)D位于直線y=2x-6上時(shí),分三種情況:
①點(diǎn)A為直角頂點(diǎn),結(jié)合圖形2可知,此種情況顯然不合題意;![]()
②點(diǎn)D為直角頂點(diǎn),分兩種情況:
(i)點(diǎn)D在矩形AOCB的內(nèi)部時(shí),如圖2,過D作x軸的平行線EF,交直線OA于E,交直線BC于F,設(shè)D(x,2x-6);
則OE=2x-6,AE=6-(2x-6)=12-2x,DF=EF-DE=8-x;
則△ADE≌△DPF,得DF=AE,即:
12-2x=8-x,x=4;
∴D(4,2);
(ii)點(diǎn)D在矩形AOCB的外部時(shí),設(shè)D(x,2x-6);
則OE=2x-6,AE=OE-OA=2x-6-6=2x-12,DF=EF-DE=8-x;
同1可知:△ADE≌△DPF⇒AE=DF,即:
2x-12=8-x,x=$\frac{20}{3}$;
∴D($\frac{20}{3}$,$\frac{22}{3}$);
③點(diǎn)P為直角頂點(diǎn),顯然此時(shí)點(diǎn)D位于矩形AOCB的外部,如圖3所示;
設(shè)點(diǎn)D(x,2x-6),則CF=2x-6,BF=2x-6-6=2x-12;
易證得△APB≌△PDF,得:
AB=PF=8,PB=DF=x-8;
故BF=PF-PB=8-(x-8)=16-x;
聯(lián)立兩個(gè)表示BF的式子可得:
2x-12=16-x,即x=$\frac{28}{3}$;
∴D($\frac{28}{3}$,$\frac{38}{3}$);
綜合上面六種情況可得:存在符合條件的等腰直角三角形;
且D點(diǎn)的坐標(biāo)為:(4,2),($\frac{20}{3}$,$\frac{22}{3}$),($\frac{28}{3}$,$\frac{38}{3}$).
點(diǎn)評 此題屬于一次函數(shù)綜合題,涉及的知識有:點(diǎn)的坐標(biāo)、矩形的性質(zhì)、一次函數(shù)的應(yīng)用、等腰直角三角形以及全等三角形等相關(guān)知識的綜合應(yīng)用,需要考慮的情況較多,難度較大,熟練掌握性質(zhì)及運(yùn)算法則是解本題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{1\frac{9}{16}}$=$\frac{5}{4}$ | B. | $\sqrt{4\frac{1}{4}}$=2$\frac{1}{2}$ | C. | $\sqrt{0.25}$=0.05 | D. | -$\sqrt{-49}$-(-7)=7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com