分析 (1)設CF=x,則BF=8-x,在Rt△ABF中,AB2+BF2=AF2,解方程可求出CF的長;
(2)過F點作FH⊥AD于H,在Rt△EHF中根據(jù)勾股定理可求出EF的長;
(3)過G點作GM⊥AD于M,根據(jù)三角形面積不變性,AG×GE=AE×GM,求出GM的長,根據(jù)三角形面積公式計算即可.
解答 解:(1)設CF=x,則BF=8-x,
在Rt△ABF中,AB2+BF2=AF2,
∴16+(8-x)2=x2,
解得:x=5,![]()
∴CF=5;
(2)過F點作FH⊥AD于H,則
FH=4,EH=AE-AH=2,
∴EF2=42+22=20,
∴EF=2$\sqrt{5}$;
(3)過G點作GM⊥AD于M,則AG×GE=AE×GM,AG=AB=4,AE=CF=5,GE=DE=3,
∴GM=$\frac{12}{5}$,
∴S△GED=$\frac{1}{2}$×GM×DE=$\frac{18}{5}$.
點評 本題主要考查了折疊的性質(zhì)、勾股定理以及三角形面積不變性,靈活運用折疊的性質(zhì)、勾股定理等幾何知識點來分析、判斷、推理是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com