分析 (1)先設(shè)出AP,表示出BP,PD,進(jìn)而用勾股定理求出x=$\frac{\sqrt{3}}{3}$AD,再用三角函數(shù)求出∠ADP=30°,即可得出結(jié)論;
(2)先求出∠CBH=120°,再判斷出Rt△BHN≌Rt△BC'N,得出∠HBN=∠C'BN,進(jìn)行代換即可得出結(jié)論;
(3)同(2)的方法判斷出HN=NC',再求出PH,即可得出結(jié)論.
解答 解:(1)設(shè)AP=x,
∴PB=AB-AP=AB-x,
∵AB=$\sqrt{3}$AD,
∴BP=$\sqrt{3}$AD-x,
∵PB=PD,
∴PD=$\sqrt{3}$AD-x,
∴四邊形ABCD是矩形,
∴BC=AD,∠C=∠A=∠ABC∠ADC=90°,
在Rt△ADP中,AP=x,PD=$\sqrt{3}$AD-x,
根據(jù)勾股定理得,AD2+AP2=PD2,
∴AD2+x2=($\sqrt{3}$AD-x)2,
∴x=$\frac{\sqrt{3}}{3}$AD,
∴tan∠ADP=$\frac{AP}{AD}$=$\frac{\sqrt{3}}{3}$,
∴∠ADP=30°,
∴∠PDC=90°-∠ADP=60°;
(2)如圖1,![]()
過點(diǎn)B作BH⊥DP交DP的延長(zhǎng)線于H,
由(1)知,BP=$\sqrt{3}$AD-x=$\frac{2\sqrt{3}}{3}$AD,∠ADP=30°,
∴∠BPH=∠APD=60°,BH=AD=BC,
∴∠PBH=30°,
∴∠CBH=120°,
∵點(diǎn)C關(guān)于直線BM的對(duì)稱點(diǎn)為點(diǎn)C′,
∴BC'=BC=AD,∠CBM=∠C'BM,∠BC'M=∠C=90°,
∴∠BC'N=90°,
在Rt△BHN和Rt△BC'N中,$\left\{\begin{array}{l}{BH=BC'}\\{BN=BN}\end{array}\right.$,
∴Rt△BHN≌Rt△BC'N,
∴∠HBN=∠C'BN,
∴∠CBH=∠HBN+∠C'BN+∠C'BM+∠CBM=120°,
∴∠MBN=∠C'BN+∠C'BM=$\frac{1}{2}$(∠HBN+∠C'BN+∠C'BM+∠CBM)=60°,
即:當(dāng)M在線段CD上時(shí),∠MBN=60°;
(3)如圖3,∵AB=$\sqrt{3}$AD=9,
∴AD=3$\sqrt{3}$,
過點(diǎn)B作BH⊥DP交DP的延長(zhǎng)線于H,
由(1)知,BP=$\sqrt{3}$AD-x=$\frac{2\sqrt{3}}{3}$AD=6,∠ADP=30°,
∴∠BPH=∠APD=60°,BH=AD=BC,
∴∠PBH=30°,
∴∠CBH=120°,
∵點(diǎn)C關(guān)于直線BM的對(duì)稱點(diǎn)為點(diǎn)C′,
∴BC'=BC=AD,∠CBM=∠C'BM,∠BC'M=∠C=90°,
∴∠BC'N=90°,
在Rt△BHN和Rt△BC'N中,$\left\{\begin{array}{l}{BH=BC'}\\{BN=BN}\end{array}\right.$,
∴Rt△BHN≌Rt△BC'N,
∴HN=NC',在Rt△BPH中,∠BPH=60°,BP=6,
∴PH=3,
∴NP=PH+HN=3+NH=3+NC',
∴NP-NC'=3.
故答案為:NP-NC'=3.
點(diǎn)評(píng) 此題是四邊形綜合題,主要考查了對(duì)稱的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,含30°的直角三角形的性質(zhì),解本題的關(guān)鍵是判斷出Rt△BHN≌Rt△BC'N,難點(diǎn)是(3)作出圖形,是一道很好的中考?碱}.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -2a | B. | -2b | C. | -2a-2b | D. | 2a-2b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com