分析 (1)首先證明∠CAD=30°,易知AD=2CD即可解決問題;
(2)首先證明四邊形AEDF是菱形,求出ED即可解決問題;
解答 解:(1)
∵∠C=90°,∠B=30°,
∴∠CAB=60°,
∵AD平分∠CAB,
∴∠CAD=$\frac{1}{2}$∠CAB=30°,
在Rt△ACD中,∵∠ACD=90°,∠CAD=30°,
∴AD=2CD=6.
(2)∵DE∥BA交AC于點(diǎn)E,DF∥CA交AB于點(diǎn)F,
∴四邊形AEDF是平行四邊形,
∵∠EAD=∠ADF=∠DAF,
∴AF=DF,
∴四邊形AEDF是菱形,
∴AE=DE=DF=AF,
在Rt△CED中,∵∠CDE=∠B=30°,
∴DE=$\frac{CD}{cos30°}$=2$\sqrt{3}$,
∴四邊形AEDF的周長為8$\sqrt{3}$.
點(diǎn)評(píng) 本題考查菱形的判定和性質(zhì)、平行線的性質(zhì)、直角三角形30度角的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考常考題型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{{{({-2})}^2}}=-2$ | B. | $\sqrt{{{({-3})}^2}}=9$ | C. | $\sqrt{x^2}=x$ | D. | $\sqrt{{{({-5})}^2}}=5$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∠A=∠D=90° | B. | ∠ABC=∠DCB | C. | ∠ACB=∠DBC | D. | AC=BD |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com