分析 利用“HL”證明Rt△BDE和Rt△CDF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得DE=DF,再根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上判斷出AD平分∠BAC,然后利用“HL”證明Rt△ADE和Rt△ADF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=AF,再根據(jù)圖形表示出表示出AE、AF,再整理即可得到AC-AB=2BE.
解答 解:在Rt△BDE和Rt△CDF中,$\left\{\begin{array}{l}{BD=CD}\\{BE=CF}\end{array}\right.$,
∴Rt△BDE≌Rt△CDF(HL),
∴DE=DF,故①正確;
又∵DE⊥AB,DF⊥AC,
∴AD平分∠BAC,故②正確;
在Rt△ADE和Rt△ADF中,$\left\{\begin{array}{l}{AD=AD}\\{DE=DF}\end{array}\right.$,
∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF,
∴AB+BE=AC-FC,
∴AC-AB=BE+FC=2BE,
即AC-AB=2BE,故④正確;
由垂線段最短可得AE<AD,故③錯(cuò)誤,
綜上所述,正確的是①②④.
故答案為:①②④.
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì),到角的兩邊距離相等的點(diǎn)在角的平分線上,熟練掌握三角形全等的判定方法并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com