分析 (1)根據(jù)拋物線的頂點(diǎn)是(2,1),因而設(shè)拋物線的表達(dá)式為y=a(x-2)2+1,把A的坐標(biāo)代入即可求得函數(shù)的解析式;
(2)根據(jù)△PCQ為等邊三角形,則△CGQ中,∠CQD=30°,CG的長度可以求得,利用直角三角形的性質(zhì),即可求得CQ,即等邊△CQP的邊長,則P的縱坐標(biāo)代入二次函數(shù)的解析式,即可求得P的坐標(biāo);
(3)解方程組即可求得E的坐標(biāo),則EF的長等于E的縱坐標(biāo),OE的長度,利用勾股定理可以求得,同理,OC的長度可以求得,則CE的長度即可求解;
(4)可以利用反證法,假設(shè)x軸上存在一點(diǎn),使△CQM≌△CPE,可以證得EM=EF,即M與F重合,與點(diǎn)E為直線y=x上的點(diǎn),∠CEF=45°即點(diǎn)M與點(diǎn)F不重合相矛盾,故M不存在.
解答 解:(1)設(shè)拋物線的表達(dá)式為y=a(x-2)2+1,將點(diǎn)A(0,2)代入,得a(0-2)2+1=2,
解這個方程,得a=$\frac{1}{4}$,
∴拋物線的表達(dá)式為y=$\frac{1}{4}$(x-2)2+1=$\frac{1}{4}$x2-x+2;
(2)將x=2代入y=x,得y=2
∴點(diǎn)C的坐標(biāo)為(2,2)即CG=2,
∵△PCQ為等邊三角形
∴∠CQP=60°,CQ=PQ,
∵PQ⊥x軸,
∴∠CQG=30°,
∴CQ=4,GQ=2$\sqrt{3}$.
∴OQ=2+2$\sqrt{3}$,PQ=4,
將y=4代入y=$\frac{1}{4}$(x-2)2+1,得4=$\frac{1}{4}$(x-2)2+1
解這個方程,得x1=2+2$\sqrt{3}$=OQ,x2=2-2$\sqrt{3}$<0(不合題意,舍去).
∴點(diǎn)P的坐標(biāo)為(2+2$\sqrt{3}$,4);
(3)把y=x代入y=$\frac{1}{4}$x2-x+2,得x=$\frac{1}{4}$x2-x+2
解這個方程,得x1=4+2$\sqrt{2}$,x2=4-2$\sqrt{2}$<2(不合題意,舍去)
∴y=4+2$\sqrt{2}$=EF
∴點(diǎn)E的坐標(biāo)為(4+2$\sqrt{2}$,4+2$\sqrt{2}$)
∴OE=$\sqrt{E{F}^{2}+O{F}^{2}}$=4+4$\sqrt{2}$,
又∵OC=$\sqrt{C{G}^{2}+O{G}^{2}}$=2$\sqrt{2}$,
∴CE=OE-OC=4+2$\sqrt{2}$,
∴CE=EF;
(4)不存在.
如圖,假設(shè)x軸上存在一點(diǎn),使△CQM≌△CPE,則CM=CE,∠QCM=∠PCE![]()
∵∠QCP=60°,
∴∠MCE=60°
又∵CE=EF,
∴EM=EF,
又∵點(diǎn)E為直線y=x上的點(diǎn),
∴∠CEF=45°,
∴點(diǎn)M與點(diǎn)F不重合.
∵EF⊥x軸,這與“垂線段最短”矛盾,
∴原假設(shè)錯誤,滿足條件的點(diǎn)M不存在.
點(diǎn)評 本題考查了待定系數(shù)法求二次函數(shù)的解析式,以及等邊三角形的性質(zhì),解直角三角形,反證法,正確求得E的坐標(biāo)是關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com