欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=$\frac{m}{x}$的圖象交于A(2,4),B(-4,n)兩點.
(1)分別求出一次函數(shù)與反比例函數(shù)的表達式;
(2)過點B作BC⊥x軸,垂足為點C,連接AC,求△ACB的面積.

分析 (1)將點A坐標(biāo)代入y=$\frac{m}{x}$可得反比例函數(shù)解析式,據(jù)此求得點B坐標(biāo),根據(jù)A、B兩點坐標(biāo)可得直線解析式;
(2)根據(jù)點B坐標(biāo)可得底邊BC=2,由A、B兩點的橫坐標(biāo)可得BC邊上的高,據(jù)此可得.

解答 解:(1)將點A(2,4)代入y=$\frac{m}{x}$,得:m=8,
則反比例函數(shù)解析式為y=$\frac{8}{x}$,
當(dāng)x=-4時,y=-2,
則點B(-4,-2),
將點A(2,4)、B(-4,-2)代入y=kx+b,
得:$\left\{\begin{array}{l}{2k+b=4}\\{-4k+b=-2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=1}\\{b=2}\end{array}\right.$,
則一次函數(shù)解析式為y=x+2;

(2)由題意知BC=2,
則△ACB的面積=$\frac{1}{2}$×2×6=6.

點評 本題主要考查一次函數(shù)與反比例函數(shù)的交點問題,熟練掌握待定系數(shù)法求函數(shù)解析式及三角形的面積求法是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四邊形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,過點C作CE∥AD交△ABC的外接圓O于點E,連接AE.
(1)求證:四邊形AECD為平行四邊形;
(2)連接CO,求證:CO平分∠BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經(jīng)過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖1,△ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點D從O點出發(fā),沿OM的方向以1cm/s的速度運動,當(dāng)D不與點A重合時,將△ACD繞點C逆時針方向旋轉(zhuǎn)60°得到△BCE,連結(jié)DE.
(1)求證:△CDE是等邊三角形;
(2)如圖2,當(dāng)6<t<10時,△BDE的周長是否存在最小值?若存在,求出△BDE的最小周長;若不存在,請說明理由;
(3)如圖3,當(dāng)點D在射線OM上運動時,是否存在以D、E、B為頂點的三角形是直角三角形?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.觀察下列的“蜂窩圖”

則第n個圖案中的“”的個數(shù)是3n+1.(用含有n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中假命題是( 。
A.正六邊形的外角和等于360°B.位似圖形必定相似
C.樣本方差越大,數(shù)據(jù)波動越小D.方程x2+x+1=0無實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC邊上的一個動點,將△ABD沿BD所在直線折疊,使點A落在點P處.

(1)如圖1,若點D是AC中點,連接PC.
①寫出BP,BD的長;
②求證:四邊形BCPD是平行四邊形.
(2)如圖2,若BD=AD,過點P作PH⊥BC交BC的延長線于點H,求PH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.解不等式組$\left\{\begin{array}{l}{2x-3<x,①}\\{3(x-1)-(x-5)≥0,②}\end{array}\right.$,并把它的解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.當(dāng)(a-2)(a-3)=0時,求代數(shù)式(a-$\frac{a}{a+1}$)÷$\frac{{a}^{2}-2a}{{a}^{2}-4}$×$\frac{1}{a+2}$的值.

查看答案和解析>>

同步練習(xí)冊答案