分析 (1)求出AB=AC=BC=4cm,MN=$\frac{1}{2}$AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分為三種情況:畫出圖形,結(jié)合圖形求出即可;
(2)根據(jù)(1)的分析得出t可取值有4個(gè),得出a的取值范圍即可.
解答 解:(1)∵△ABC是等邊三角形,
∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,
∵QN∥AC,AM=BM.
∴N為BC中點(diǎn),
∴MN=$\frac{1}{2}$AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,
分為三種情況:
①如圖1,![]()
當(dāng)⊙P切AB于M′時(shí),連接PM′,
則PM′=$\sqrt{3}$cm,∠PM′M=90°,
∵∠PMM′=∠BMN=60°,
∴M′M=1cm,PM=2MM′=2cm,
∴QP=4cm-2cm=2cm,
即t=2;
②如圖2,
當(dāng)⊙P于AC切于A點(diǎn)時(shí),連接PA,
則∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=$\sqrt{3}$cm,
∴PM=1cm,![]()
∴QP=4cm-1cm=3cm,
即t=3,
當(dāng)⊙P于AC切于C點(diǎn)時(shí),連接P′C,
則∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=$\sqrt{3}$cm,
∴P′N=1cm,
∴QP=4cm+2cm+1cm=7cm,
即當(dāng)3≤t≤7時(shí),⊙P和AC邊相切;
③如圖3,![]()
當(dāng)⊙P切BC于N′時(shí),連接PN′
則PN′=$\sqrt{3}$cm,∠PN′N=90°,
∵∠PNN′=∠BNM=60°,
∴N′N=1cm,PN=2NN′=2cm,
∴QP=4cm+2cm+2cm=8cm,
即t=8;
注意:由于對(duì)稱性可知,當(dāng)P點(diǎn)運(yùn)動(dòng)到AB右側(cè)時(shí)也存在⊙P切AB,此時(shí)PM也是為2,即P點(diǎn)為N點(diǎn),同理可得P點(diǎn)在M點(diǎn)時(shí),⊙P切BC.這兩點(diǎn)都在第二種情況運(yùn)動(dòng)時(shí)間內(nèi).
故答案為:t=2或3≤t≤7或t=8;
(2)因?yàn)楫?dāng)⊙P與△ABC的邊相切時(shí).此時(shí)t可取值有且僅有4個(gè),
當(dāng)t=2時(shí),a=2;
當(dāng)t=3時(shí),a=1;
當(dāng)t=7時(shí),a=1.5;
當(dāng)t=8時(shí),a=4;
可得:1≤a≤4.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì),平行線的性質(zhì),勾股定理,含30度角的直角三角形性質(zhì),切線的性質(zhì)的應(yīng)用,主要考查學(xué)生綜合運(yùn)用定理進(jìn)行計(jì)算的能力,注意要進(jìn)行分類討論。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 245×104 | B. | 2.45×106 | C. | 24.5×105 | D. | 2.45×107 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 20° | B. | 80° | C. | 20°或80° | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x≥3 | B. | x≤3 | C. | x≤2 | D. | x≥2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com