分析 (1)首先連接AD并延長至點F,然后根據(jù)外角的性質(zhì),即可判斷出∠BDC=∠A+∠B+∠C.
(2)①由(1)可得∠ABX+∠ACX+∠A=∠BXC,然后根據(jù)∠A=40°,∠BXC=90°,求出∠ABX+∠ACX的值是多少即可.
②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB,再根據(jù)∠DAE=40°,∠DBE=130°,求出∠ADB+∠AEB的值是多少;然后根據(jù)∠DCE=$\frac{1}{2}$(∠ADB+∠AEB)+∠DAE,求出∠DCE的度數(shù)是多少即可.
③根據(jù)∠BG1C=$\frac{1}{10}$(∠ABD+∠ACD)+∠A,∠BG1C=70°,設(shè)∠A為x°,可得∠ABD+∠ACD=133°-x°,解方程,求出x的值,即可判斷出∠A的度數(shù)是多少.
解答 解:(1)如圖(1),連接AD并延長至點F,
,
根據(jù)外角的性質(zhì),可得
∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,
又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,
∴∠BDC=∠A+∠B+∠C;
(2)①由(1),可得
∠ABX+∠ACX+∠A=∠BXC,
∵∠A=40°,∠BXC=90°,
∴∠ABX+∠ACX=90°-40°=50°,
故答案為:50.
②由(1),可得
∠DBE=∠DAE+∠ADB+∠AEB,
∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,
∴$\frac{1}{2}$(∠ADB+∠AEB)=90°÷2=45°,
∴∠DCE=$\frac{1}{2}$(∠ADB+∠AEB)+∠DAE
=45°+40°
=85°;
③∠BG1C=$\frac{1}{10}$(∠ABD+∠ACD)+∠A,
∵∠BG1C=70°,
∴設(shè)∠A為x°,
∵∠ABD+∠ACD=133°-x°
∴$\frac{1}{10}$(133-x)+x=70,
∴13.3-$\frac{1}{10}$x+x=70,
解得x=63,
即∠A的度數(shù)為63°.
點評 此題主要考查了三角形的內(nèi)角和定理,利用三角形的內(nèi)角和定理和外角的性質(zhì)是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -1 | B. | 1 | C. | -$\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 第4塊 | B. | 第3塊 | C. | 第2塊 | D. | 第1塊 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 打折前一次性購物總金額 | 優(yōu)惠措施 |
| 不超過300元 | 不優(yōu)惠 |
| 超過300元且不超過400元 | 售價打九折 |
| 超過400元 | 售價打八折 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com