分析 (1)根據(jù)方程有兩個(gè)不相等的實(shí)數(shù)根可得△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4>0,解不等式求出m的取值范圍即可;
(2)根據(jù)方程有兩個(gè)相等的實(shí)數(shù)根可得△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4=0,解m的一元一次方程,求出m的值,進(jìn)而求出方程的根;
(3)根據(jù)方程沒(méi)有實(shí)數(shù)根可得△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4<0,求出m的取值范圍,進(jìn)而得到m的最小整數(shù)值.
解答 解:(1)∵關(guān)于x的方程$\frac{1}{4}$x2-(m-2)x+m2=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△>0,
∴△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4>0,
∴m<1;
(2)∵方程有兩個(gè)相等的實(shí)數(shù)根,
∴△=0,
∴△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4=0,
∴m=1,
∴$\frac{1}{4}$x2+x+1=0,
∴x1=x2=-$\frac{1}{2}$;
(3)∵方程沒(méi)有實(shí)數(shù)根,
∴△<0,
∴△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4<0,
∴m>1,
∴m的最小整數(shù)值為2.
點(diǎn)評(píng) 本題考查了根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:
(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;
(3)△<0?方程沒(méi)有實(shí)數(shù)根.
同時(shí)考查了一元二次方程的解法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com