分析 先根據(jù)題意得出∠1=∠2,故可得出AC∥BD,由AC⊥AE可得出∠EAC=90°,故可得出∠EAB=∠EAC+∠1=120°,同理可知∠FBG=∠FBD+∠2=120°,故可得出∠EAB=∠FBG,據(jù)此可得出結(jié)論.
解答 解:∵∠1=30°,∠2=30°,
∴∠1=∠2.
∴AC∥BD(同位角相等,兩直線平行).
又∵AC⊥AE(已知),
∴∠EAC=90°(垂直定義 ),
∴∠EAB=∠EAC+∠1=120°.
同理:∠FBG=∠FBD+∠2=120°.
∴∠EAB=∠FBG(等式的性質(zhì)).
∴AE∥BF(同位角相等,兩直線平行).
故答案為:AC,BD,同位角相等,兩直線平行;120;等式的性質(zhì);AE,BF.
點(diǎn)評(píng) 本題考查的是平行線的判定與性質(zhì),熟知平行線的判定定理是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3$\sqrt{3}$-$\sqrt{3}$=3 | B. | $\sqrt{8}$×$\sqrt{2}$=$\sqrt{8×2}$ | C. | $\frac{3}{2}$$\sqrt{3}$×4$\sqrt{3}$=6$\sqrt{3}$ | D. | 2$\sqrt{15}$+2$\sqrt{3}$=$\sqrt{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 296瓶 | B. | 298瓶 | C. | 300瓶 | D. | 302瓶 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com