分析 (1)連接AC,交BD于點O.利用正方形的性質(zhì)得出AC⊥BD,OA=OC=OB=OD,進(jìn)一步得出OE=OF,證得四邊形AECF是菱形;
(2)利用菱形的性質(zhì)和勾股定理求得即可.
解答 解:(1)四邊形AECF是菱形,理由如下:
連接AC,交BD于點O,![]()
∵四邊形ABCD是正方形,
∴AC⊥BD,OA=OC=OB=OD
∴DE=BF
∴OE=OF
∴四邊形AECF是菱形;
(2)∵EF=4,DE=BF=2,
∴AC=BD=8,
∴AE=$\sqrt{O{A}^{2}+O{E}^{2}\\;}=\sqrt{{4}^{2}+{2}^{2}}=2\sqrt{5}$,
∴四邊形AECF的周長為8$\sqrt{5}$.
點評 此題考查正方形的性質(zhì),菱形的判定,勾股定理等知識點,注意結(jié)合已知條件合理作出輔助線解決問題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6 | B. | 5 | C. | 4.5 | D. | 與AP的長度有關(guān) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{xy=1}\\{x+y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+3y=2}\\{y+3z=14}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x-2z=0}\\{x+y=4}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{5x-2y=2}\\{x+y=4}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com