分析 (1)利用等腰三角形的性質(zhì),證明OC⊥AB即可;
(2)證明OC∥EG,推出△GOC∽△GEF即可解決問(wèn)題;
(3)設(shè)OC=OD=r,在Rt△BOC中,根據(jù)OB2=OC2+BC2,列出方程即可解決問(wèn)題;
解答 (1)證明:
∵OA=OB,AC=BC,
∴OC⊥AB,
∴⊙O是AB的切線.
(2)證明:∵OA=OB,AC=BC,
∴∠AOC=∠BOC,
∵OE=OF,
∴∠OFE=∠OEF,
∵∠AOB=∠OFE+∠OEF,
∴∠AOC=∠OEF,
∴OC∥EF,
∴△GOC∽△GEF,
∴$\frac{GO}{GE}$=$\frac{EF}{OC}$,∵OD=OC,
∴OD•EG=OG•EF.
(3)解:設(shè)OC=OD=r,
在Rt△BOC中,∵OB2=OC2+BC2,
∴(r+2)2=r2+42,
∴r=3,
∴⊙O的半徑為3.
點(diǎn)評(píng) 本題考查切線的判定、等腰三角形的性質(zhì)、平行線的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ∠3=∠4 | B. | AB∥CD | C. | AD∥BC | D. | ∠B=∠D |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=1}\\{y=8}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=-3}\\{y=-2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com