分析 (1)只需利用三角函數(shù)就可解決問題;
(2)表示出RH,F(xiàn)C建立方程求解即可.
(3)可分△PQR全部在△ABC內(nèi)和△PQR部分在△ABC內(nèi)兩種情況討論:當(dāng)△PQR全部在△ABC內(nèi)時(shí),只需運(yùn)用三角形的面積公式就可解決問題;當(dāng)△PQR部分在△ABC內(nèi)時(shí),只需運(yùn)用割補(bǔ)法就可解決問題;
(4)可通過構(gòu)造K型全等,并利用相似三角形的性質(zhì)來解決問題.
解答 解:(1)如圖①,![]()
由題意可知AP=4t,
tanA=$\frac{PQ}{AP}=\frac{BC}{AC}=\frac{3}{4}$,
∴PQ=3t;
(2)如圖①,點(diǎn)R恰好落在BC上時(shí),RH=PC=4-4t=$\frac{3}{2}$t,
∴t=$\frac{8}{11}$.
(3)①當(dāng)0<t≤$\frac{8}{11}$時(shí),如圖①.![]()
過點(diǎn)R作RH⊥PQ于點(diǎn)H,
S=$\frac{1}{2}$PQ•RH=$\frac{1}{2}$×3t×$\frac{3}{2}$t=$\frac{9}{4}$t2.
②當(dāng)$\frac{8}{11}$<t<1時(shí),如圖③.![]()
過點(diǎn)R作RH⊥PQ于點(diǎn)H,交BC于點(diǎn)G,
則有RG⊥MN,RH=$\frac{1}{2}$PQ=$\frac{3}{2}$t,GH=PC=4-4t,
∴S=S△RPQ-S△RMN=$\frac{1}{2}$PQ•RH-$\frac{1}{2}$MN•RH
=RH2-RG2=($\frac{3}{2}$t)2-[$\frac{3}{2}$t-(4-4t)]2
=-28t2+44t-16;
(4)點(diǎn)P在AC上,且點(diǎn)R在AB的高CH上,如圖④,![]()
過點(diǎn)P作PG⊥CH于G,
易證△PGR≌△RHQ,則有PG=RH,GR=QH.
易求得AB=5,CH=$\frac{12}{5}$,AH=$\frac{16}{5}$,BH=$\frac{9}{5}$.
PC=4-4t,CG=$\frac{3}{5}$PC=$\frac{3}{5}$(4-4t),PG=$\frac{4}{5}$PC=$\frac{4}{5}$(4-4t),
AQ=$\frac{4}{5}$AP=5t,QH=AH-AQ=$\frac{16}{5}$-5t.
根據(jù)CH=CG+GR+RH=CG+QH+PG=$\frac{12}{5}$,得
$\frac{3}{5}$(4-4t)+$\frac{16}{5}$-5t+$\frac{4}{5}$(4-4t)=$\frac{12}{5}$,
解得:t=$\frac{32}{53}$.
點(diǎn)評 此題是三角形綜合題,主要考查了三角函數(shù)、等腰直角三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、角平分線的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)等知識,在解決問題的過程中,用到了割補(bǔ)法和分類討論等重要的數(shù)學(xué)思想方法,準(zhǔn)確分類是解決本題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{8}$-$\sqrt{2}$=$\sqrt{6}$ | B. | 2$\sqrt{3}$+3$\sqrt{3}$=6$\sqrt{3}$ | C. | $\sqrt{6}$$÷\sqrt{2}$=$\sqrt{3}$ | D. | ($\sqrt{2}$+1)($\sqrt{2}$-1)=3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com