分析 (1)直接利用全等三角形的判定方法得出△DCE≌△BCE(SAS),即可得出答案;
(2)利用正方形的性質(zhì)結(jié)合等腰三角形的性質(zhì)得出:①當(dāng)F在AB延長線上時;②當(dāng)F在線段AB上時;分別求出即可.
解答 (1)證明:∵四邊形ABCD是菱形,
∴CD=AB,∠ACD=∠ACB,
在△DCE和△BCE中
$\left\{\begin{array}{l}{DC=CB}\\{∠DCE=∠BCE}\\{EC=EC}\end{array}\right.$,
∴△DCE≌△BCE(SAS),
∴∠CDE=∠CBE,
∵CD∥AB,
∴∠CDE=∠AFD,
∴∠EBC=∠AFD;
(2)分兩種情況:
①如圖1,當(dāng)F在AB延長線上時,![]()
∵∠EBF為鈍角,
∴只能是BE=BF,設(shè)∠BEF=∠BFE=x°,
可通過三角形內(nèi)角形為180°得:90+x+x+x=180,
解得:x=30,
∴∠EFB=30°;
②如圖2,當(dāng)F在線段AB上時,![]()
∵∠EFB為鈍角,
∴只能是FE=FB,設(shè)∠BEF=∠EBF=x°,則有∠AFD=2x°,
可證得:∠AFD=∠FDC=∠CBE,
得x+2x=90,
解得:x=30,
∴∠EFB=120°.
綜上:∠EFB=30°或120°.
點評 此題主要考查了菱形的性質(zhì)以及正方形的性質(zhì)以及全等三角形的判定與性質(zhì)等知識,利用分類討論得出是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2a-a=2 | B. | (a-1)2=a2-1 | C. | (-4a6)÷(-2a2)=2a4 | D. | a2•a4=a8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com