分析 將點(diǎn)B(2,n)、P(3n-4,1)代入反比例函數(shù)的解析式可求得m、n的值,從而求得反比例函數(shù)的解析式以及點(diǎn)B和點(diǎn)P的坐標(biāo),過(guò)點(diǎn)P作PD⊥BC,垂足為D,并延長(zhǎng)交AB與點(diǎn)P′.接下來(lái)證明△BDP≌△BDP′,從而得到點(diǎn)P′的坐標(biāo),最后將點(diǎn)P′和點(diǎn)B的坐標(biāo)代入一次函數(shù)的解析式即可求得一次函數(shù)的表達(dá)式.
解答 解:∵點(diǎn)B(2,n)、P(3n-4,1)在反比例函數(shù)y=$\frac{m}{x}$(x>0)的圖象上,
∴$\left\{\begin{array}{l}{2n=m}\\{3n-4=m}\end{array}\right.$.
解得:m=8,n=4.
∴反比例函數(shù)的表達(dá)式為y=$\frac{8}{x}$.
∵m=8,n=4,
∴點(diǎn)B(2,4),P(8,1).
過(guò)點(diǎn)P作PD⊥BC,垂足為D,并延長(zhǎng)交AB與點(diǎn)P′.![]()
在△BDP和△BDP′中,
$\left\{\begin{array}{l}{∠PBD=∠P′BD}\\{BD=BD}\\{∠BDP=∠BDP′}\end{array}\right.$
∴△BDP≌△BDP′.
∴DP′=DP=6.
∴點(diǎn)P′(-4,1).
將點(diǎn)P′(-4,1),B(2,4)代入直線的解析式得:$\left\{\begin{array}{l}{2k+b=4}\\{-4k+b=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=3}\end{array}\right.$.
∴一次函數(shù)的表達(dá)式為y=$\frac{1}{2}$x+3.
點(diǎn)評(píng) 本題主要考查的是一次函數(shù)和反比例函數(shù)的綜合應(yīng)用,根據(jù)題意列出方程組是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 45° | B. | 90° | C. | 100° | D. | 135° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2$\sqrt{3}$m | B. | 2$\sqrt{6}$m | C. | (2$\sqrt{3}$-2)m | D. | (2$\sqrt{6}$-2)m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com