分析 (1)根據(jù)方程有兩個實數(shù)根可以得到△≥0,從而求得k的取值范圍;
(2)利用根與系數(shù)的關(guān)系將兩根之和和兩根之積代入代數(shù)式求k的值即可.
解答 解:(1)∵方程有實數(shù)根,
∴△=[-(2k-1)]2-4k2≥0,
解得k≤$\frac{1}{4}$.
(2)由根與系數(shù)關(guān)系知:
x1+x2=2k-1,x1x2=k2,
又∵$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$═$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{1}{2}$,
∴$\frac{2k-1}{{k}^{2}}$=-$\frac{1}{2}$,
解得:k=-2+$\sqrt{6}$或k=-2-$\sqrt{6}$,
∵k≤$\frac{1}{4}$,
∴k=-2-$\sqrt{6}$.
點評 本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的實數(shù)根;當(dāng)△<0時,方程沒有實數(shù)根.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com