分析 (1)根據(jù)平移的性質(zhì),可得PQ,根據(jù)一組對邊平行且相等的四邊形是平行四邊形,可得答案;
(2)根據(jù)正方形的性質(zhì),平移的性質(zhì),可得PQ與AB的關(guān)系,根據(jù)等腰直角三角形的判定與性質(zhì),可得∠PQO,根據(jù)全等三角形的判定與性質(zhì),可得AO與OP的數(shù)量關(guān)系,根據(jù)余角的性質(zhì),可得AO與OP的位置關(guān)系;
(3)根據(jù)等腰直角三角形的性質(zhì),可得OE的長,根據(jù)三角形的面積公式,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得到答案.
解答 (1)四邊形APQD為平行四邊形;
(2)OA=OP,OA⊥OP,理由如下:
∵四邊形ABCD是正方形,
∴AB=BC=PQ,∠ABO=∠OBQ=45°,
∵OQ⊥BD,
∴∠PQO=45°,
∴∠ABO=∠OBQ=∠PQO=45°,
∴OB=OQ,
在△AOB和△OPQ中,
$\left\{\begin{array}{l}{AB=PQ}\\{∠ABO=∠PQO}\\{BO=QO}\end{array}\right.$
∴△AOB≌△POQ(SAS),
∴OA=OP,∠AOB=∠POQ,
∴∠AOP=∠BOQ=90°,![]()
∴OA⊥OP;
(3)如圖,過O作OE⊥BC于E.
①如圖1,當(dāng)P點(diǎn)在B點(diǎn)右側(cè)時(shí),
則BQ=x+2,OE=$\frac{x+2}{2}$,
∴y=$\frac{1}{2}$×$\frac{x+2}{2}$•x,即y=$\frac{1}{4}$(x+1)2-$\frac{1}{4}$,
又∵0≤x≤2,
∴當(dāng)x=2時(shí),y有最大值為2;![]()
②如圖2,當(dāng)P點(diǎn)在B點(diǎn)左側(cè)時(shí),
則BQ=2-x,OE=$\frac{2-x}{2}$,
∴y=$\frac{1}{2}$×$\frac{2-x}{2}$•x,即y=-$\frac{1}{4}$(x-1)2+$\frac{1}{4}$,
又∵0≤x≤2,
∴當(dāng)x=1時(shí),y有最大值為$\frac{1}{4}$;
綜上所述,∴當(dāng)x=2時(shí),y有最大值為2;
點(diǎn)評 本題考查了二次函數(shù)綜合題,利用平行四邊形的判定是解題關(guān)鍵;利用全等三角形的判定與性質(zhì)是解題關(guān)鍵;利用等腰直角三角形的性質(zhì)的出OE的長是解題關(guān)鍵,又利用了二次函數(shù)的性質(zhì).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 摸出的是3個(gè)白球 | B. | 摸出的是3個(gè)黑球 | ||
| C. | 摸出的是2個(gè)白球、1個(gè)黑球 | D. | 摸出的是2個(gè)黑球、1個(gè)白球 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (a-b)2=a2-b2 | B. | (1+a)(a-1)=a2-1 | C. | a2+ab+b2=(a+b)2 | D. | (x+3)2=x2+3x+9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com